September 22, 2019  |  

Comparative genomic and methylome analysis of non-virulent D74 and virulent Nagasaki Haemophilus parasuis isolates.

Haemophilus parasuis is a respiratory pathogen of swine and the etiological agent of Glässer’s disease. H. parasuis isolates can exhibit different virulence capabilities ranging from lethal systemic disease to subclinical carriage. To identify genomic differences between phenotypically distinct strains, we obtained the closed whole-genome sequence annotation and genome-wide methylation patterns for the highly virulent Nagasaki strain and for the non-virulent D74 strain. Evaluation of the virulence-associated genes contained within the genomes of D74 and Nagasaki led to the discovery of a large number of toxin-antitoxin (TA) systems within both genomes. Five predicted hemolysins were identified as unique to Nagasaki and seven putative contact-dependent growth inhibition toxin proteins were identified only in strain D74. Assessment of all potential vtaA genes revealed thirteen present in the Nagasaki genome and three in the D74 genome. Subsequent evaluation of the predicted protein structure revealed that none of the D74 VtaA proteins contain a collagen triple helix repeat domain. Additionally, the predicted protein sequence for two D74 VtaA proteins is substantially longer than any predicted Nagasaki VtaA proteins. Fifteen methylation sequence motifs were identified in D74 and fourteen methylation sequence motifs were identified in Nagasaki using SMRT sequencing analysis. Only one of the methylation sequence motifs was observed in both strains indicative of the diversity between D74 and Nagasaki. Subsequent analysis also revealed diversity in the restriction-modification systems harbored by D74 and Nagasaki. The collective information reported in this study will aid in the development of vaccines and intervention strategies to decrease the prevalence and disease burden caused by H. parasuis.


September 22, 2019  |  

A complete Leishmania donovani reference genome identifies novel genetic variations associated with virulence.

Leishmania donovani is responsible for visceral leishmaniasis, a neglected and lethal parasitic disease with limited treatment options and no vaccine. The study of L. donovani has been hindered by the lack of a high-quality reference genome and this can impact experimental outcomes including the identification of virulence genes, drug targets and vaccine development. We therefore generated a complete genome assembly by deep sequencing using a combination of second generation (Illumina) and third generation (PacBio) sequencing technologies. Compared to the current L. donovani assembly, the genome assembly reported within resulted in the closure over 2,000 gaps, the extension of several chromosomes up to telomeric repeats and the re-annotation of close to 15% of protein coding genes and the annotation of hundreds of non-coding RNA genes. It was possible to correctly assemble the highly repetitive A2 and Amastin virulence gene clusters. A comparative sequence analysis using the improved reference genome confirmed 70 published and identified 15 novel genomic differences between closely related visceral and atypical cutaneous disease-causing L. donovani strains providing a more complete map of genes associated with virulence and visceral organ tropism. Bioinformatic tools including protein variation effect analyzer and basic local alignment search tool were used to prioritize a list of potential virulence genes based on mutation severity, gene conservation and function. This complete genome assembly and novel information on virulence factors will support the identification of new drug targets and the development of a vaccine for L. donovani.


September 22, 2019  |  

A strain of an emerging Indian Xanthomonas oryzae pv. oryzae pathotype defeats the rice bacterial blight resistance gene xa13 without inducing a clade III SWEET gene and is nearly identical to a recent Thai isolate.

The rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) injects transcription activator-like effectors (TALEs) that bind and activate host “susceptibility” (S) genes important for disease. Clade III SWEET genes are major S genes for bacterial blight. The resistance genes xa5, which reduces TALE activity generally, and xa13, a SWEET11 allele not recognized by the cognate TALE, have been effectively deployed. However, strains that defeat both resistance genes individually were recently reported in India and Thailand. To gain insight into the mechanism(s), we completely sequenced the genome of one such strain from each country and examined the encoded TALEs. Strikingly, the two strains are clones, sharing nearly identical TALE repertoires, including a TALE known to activate SWEET11 strongly enough to be effective even when diminished by xa5. We next investigated SWEET gene induction by the Indian strain. The Indian strain induced no clade III SWEET in plants harboring xa13, indicating a pathogen adaptation that relieves dependence on these genes for susceptibility. The findings open a door to mechanistic understanding of the role SWEET genes play in susceptibility and illustrate the importance of complete genome sequence-based monitoring of Xoo populations in developing varieties with effective disease resistance.


September 22, 2019  |  

Phenotypic and genomic comparison of Photorhabdus luminescens subsp. laumondii TT01 and a widely used rifampicin-resistant Photorhabdus luminescens laboratory strain.

Photorhabdus luminescens is an enteric bacterium, which lives in mutualistic association with soil nematodes and is highly pathogenic for a broad spectrum of insects. A complete genome sequence for the type strain P. luminescens subsp. laumondii TT01, which was originally isolated in Trinidad and Tobago, has been described earlier. Subsequently, a rifampicin resistant P. luminescens strain has been generated with superior possibilities for experimental characterization. This strain, which is widely used in research, was described as a spontaneous rifampicin resistant mutant of TT01 and is known as TT01-RifR.Unexpectedly, upon phenotypic comparison between the rifampicin resistant strain and its presumed parent TT01, major differences were found with respect to bioluminescence, pigmentation, biofilm formation, haemolysis as well as growth. Therefore, we renamed the strain TT01-RifR to DJC. To unravel the genomic basis of the observed differences, we generated a complete genome sequence for strain DJC using the PacBio long read technology. As strain DJC was supposed to be a spontaneous mutant, only few sequence differences were expected. In order to distinguish these from potential sequencing errors in the published TT01 genome, we re-sequenced a derivative of strain TT01 in parallel, also using the PacBio technology. The two TT01 genomes differed at only 30 positions. In contrast, the genome of strain DJC varied extensively from TT01, showing 13,000 point mutations, 330 frameshifts, and 220 strain-specific regions with a total length of more than 300 kb in each of the compared genomes.According to the major phenotypic and genotypic differences, the rifampicin resistant P. luminescens strain, now named strain DJC, has to be considered as an independent isolate rather than a derivative of strain TT01. Strains TT01 and DJC both belong to P. luminescens subsp. laumondii.


September 22, 2019  |  

Genome sequence of the potato pathogenic fungus Alternaria solani HWC-168 reveals clues for its conidiation and virulence.

Alternaria solani is a known air-born deuteromycete fungus with a polycyclic life cycle and is the causal agent of early blight that causes significant yield losses of potato worldwide. However, the molecular mechanisms underlying the conidiation and pathogenicity remain largely unknown.We produced a high-quality genome assembly of A. solani HWC-168 that was isolated from a major potato-producing region of Northern China, which facilitated a comprehensive gene annotation, the accurate prediction of genes encoding secreted proteins and identification of conidiation-related genes. The assembled genome of A. solani HWC-168 has a genome size 32.8 Mb and encodes 10,358 predicted genes that are highly similar with related Alternaria species including Alternaria arborescens and Alternaria brassicicola. We identified conidiation-related genes in the genome of A. solani HWC-168 by searching for sporulation-related homologues identified from Aspergillus nidulans. A total of 975 secreted protein-encoding genes, which might act as virulence factors, were identified in the genome of A. solani HWC-168. The predicted secretome of A. solani HWC-168 possesses 261 carbohydrate-active enzymes (CAZy), 119 proteins containing RxLx[EDQ] motif and 27 secreted proteins unique to A. solani.Our findings will facilitate the identification of conidiation- and virulence-related genes in the genome of A. solani. This will permit new insights into understanding the molecular mechanisms underlying the A. solani-potato pathosystem and will add value to the global fungal genome database.


September 22, 2019  |  

The genomic landscape of molecular responses to natural drought stress in Panicum hallii

Environmental stress is a major driver of ecological community dynamics and agricultural productivity. This is especially true for soil water availability, because drought is the greatest abiotic inhibitor of worldwide crop yields. Here, we test the genetic basis of drought responses in the genetic model for C4perennial grasses, Panicum hallii, through population genomics, field-scale gene-expression (eQTL) analysis, and comparison of two complete genomes. While gene expression networks are dominated by local cis-regulatory elements, we observe three genomic hotspots of unlinked trans-regulatory loci. These regulatory hubs are four times more drought responsive than the genome-wide average. Additionally, cis- and trans-regulatory networks are more likely to have opposing effects than expected under neutral evolution, supporting a strong influence of compensatory evolution and stabilizing selection. These results implicate trans-regulatory evolution as a driver of drought responses and demonstrate the potential for crop improvement in drought-prone regions through modification of gene regulatory networks.


September 22, 2019  |  

Genomic and transcriptomic comparisons of closely related malaria parasites differing in virulence and sequestration pattern.

Background: Malaria parasite species differ greatly in the harm they do to humans. While P. falciparum kills hundreds of thousands per year, P. vivax kills much less often and P. malariae is relatively benign. Strains of the rodent malaria parasite Plasmodium chabaudi show phenotypic variation in virulence during infections of laboratory mice. This make it an excellent species to study genes which may be responsible for this trait. By understanding the mechanisms which underlie differences in virulence we can learn how parasites adapt to their hosts and how we might prevent disease. Methods: Here we present a complete reference genome sequence for a more virulent P. chabaudi strain, PcCB, and perform a detailed comparison with the genome of the less virulent PcAS strain. Results: We found the greatest variation in the subtelomeric regions, in particular amongst the sequences of the pir gene family, which has been associated with virulence and establishment of chronic infection. Despite substantial variation at the sequence level, the repertoire of these genes has been largely maintained, highlighting the requirement for functional conservation as well as diversification in host-parasite interactions. However, a subset of pir genes, previously associated with increased virulence, were more highly expressed in PcCB, suggesting a role for this gene family in virulence differences between strains. We found that core genes involved in red blood cell invasion have been under positive selection and that the more virulent strain has a greater preference for reticulocytes, which has elsewhere been associated with increased virulence. Conclusions: These results provide the basis for a mechanistic understanding of the phenotypic differences between Plasmodium chabaudi strains, which might ultimately be translated into a better understanding of malaria parasites affecting humans.


September 22, 2019  |  

Genomic characterization of a B chromosome in Lake Malawi cichlid fishes.

B chromosomes (Bs) were discovered a century ago, and since then, most studies have focused on describing their distribution and abundance using traditional cytogenetics. Only recently have attempts been made to understand their structure and evolution at the level of DNA sequence. Many questions regarding the origin, structure, function, and evolution of B chromosomes remain unanswered. Here, we identify B chromosome sequences from several species of cichlid fish from Lake Malawi by examining the ratios of DNA sequence coverage in individuals with or without B chromosomes. We examined the efficiency of this method, and compared results using both Illumina and PacBio sequence data. The B chromosome sequences detected in 13 individuals from 7 species were compared to assess the rates of sequence replacement. B-specific sequence common to at least 12 of the 13 datasets were identified as the “Core” B chromosome. The location of B sequence homologs throughout the genome provides further support for theories of B chromosome evolution. Finally, we identified genes and gene fragments located on the B chromosome, some of which may regulate the segregation and maintenance of the B chromosome.


September 22, 2019  |  

De novo assembly of the Pasteuria penetrans genome reveals high plasticity, host dependency, and BclA-like collagens.

Pasteuria penetrans is a gram-positive endospore forming bacterial parasite of Meloidogyne spp. the most economically damaging genus of plant parasitic nematodes globally. The obligate antagonistic nature of P. penetrans makes it an attractive candidate biological control agent. However, deployment of P. penetrans for this purpose is inhibited by a lack of understanding of its metabolism and the molecular mechanics underpinning parasitism of the host, in particular the initial attachment of the endospore to the nematode cuticle. Several attempts to assemble the genomes of species within this genus have been unsuccessful. Primarily this is due to the obligate parasitic nature of the bacterium which makes obtaining genomic DNA of sufficient quantity and quality which is free from contamination challenging. Taking advantage of recent developments in whole genome amplification, long read sequencing platforms, and assembly algorithms, we have developed a protocol to generate large quantities of high molecular weight genomic DNA from a small number of purified endospores. We demonstrate this method via genomic assembly of P. penetrans. This assembly reveals a reduced genome of 2.64Mbp estimated to represent 86% of the complete sequence; its reduced metabolism reflects widespread reliance on the host and possibly associated organisms. Additionally, apparent expansion of transposases and prediction of partial competence pathways suggest a high degree of genomic plasticity. Phylogenetic analysis places our sequence within the Bacilli, and most closely related to Thermoactinomyces species. Seventeen predicted BclA-like proteins are identified which may be involved in the determination of attachment specificity. This resource may be used to develop in vitro culture methods and to investigate the genetic and molecular basis of attachment specificity.


September 21, 2019  |  

PacBio assembly of a Plasmodium knowlesi genome sequence with Hi-C correction and manual annotation of the SICAvar gene family.

Plasmodium knowlesi has risen in importance as a zoonotic parasite that has been causing regular episodes of malaria throughout South East Asia. The P. knowlesi genome sequence generated in 2008 highlighted and confirmed many similarities and differences in Plasmodium species, including a global view of several multigene families, such as the large SICAvar multigene family encoding the variant antigens known as the schizont-infected cell agglutination proteins. However, repetitive DNA sequences are the bane of any genome project, and this and other Plasmodium genome projects have not been immune to the gaps, rearrangements and other pitfalls created by these genomic features. Today, long-read PacBio and chromatin conformation technologies are overcoming such obstacles. Here, based on the use of these technologies, we present a highly refined de novo P. knowlesi genome sequence of the Pk1(A+) clone. This sequence and annotation, referred to as the ‘MaHPIC Pk genome sequence’, includes manual annotation of the SICAvar gene family with 136 full-length members categorized as type I or II. This sequence provides a framework that will permit a better understanding of the SICAvar repertoire, selective pressures acting on this gene family and mechanisms of antigenic variation in this species and other pathogens.


September 21, 2019  |  

The kinetoplastid-infecting Bodo saltans virus (BsV), a window into the most abundant giant viruses in the sea.

Giant viruses are ecologically important players in aquatic ecosystems that have challenged concepts of what constitutes a virus. Herein, we present the giant Bodo saltans virus (BsV), the first characterized representative of the most abundant group of giant viruses in ocean metagenomes, and the first isolate of a klosneuvirus, a subgroup of the Mimiviridae proposed from metagenomic data. BsV infects an ecologically important microzooplankton, the kinetoplastid Bodo saltans. Its 1.39 Mb genome encodes 1227 predicted ORFs, including a complex replication machinery. Yet, much of its translational apparatus has been lost, including all tRNAs. Essential genes are invaded by homing endonuclease-encoding self-splicing introns that may defend against competing viruses. Putative anti-host factors show extensive gene duplication via a genomic accordion indicating an ongoing evolutionary arms race and highlighting the rapid evolution and genomic plasticity that has led to genome gigantism and the enigma that is giant viruses.© 2018, Deeg et al.


September 21, 2019  |  

Population sequencing reveals clonal diversity and ancestral inbreeding in the grapevine cultivar Chardonnay.

Chardonnay is the basis of some of the world’s most iconic wines and its success is underpinned by a historic program of clonal selection. There are numerous clones of Chardonnay available that exhibit differences in key viticultural and oenological traits that have arisen from the accumulation of somatic mutations during centuries of asexual propagation. However, the genetic variation that underlies these differences remains largely unknown. To address this knowledge gap, a high-quality, diploid-phased Chardonnay genome assembly was produced from single-molecule real time sequencing, and combined with re-sequencing data from 15 different Chardonnay clones. There were 1620 markers identified that distinguish the 15 clones. These markers were reliably used for clonal identification of independently sourced genomic material, as well as in identifying a potential genetic basis for some clonal phenotypic differences. The predicted parentage of the Chardonnay haplomes was elucidated by mapping sequence data from the predicted parents of Chardonnay (Gouais blanc and Pinot noir) against the Chardonnay reference genome. This enabled the detection of instances of heterosis, with differentially-expanded gene families being inherited from the parents of Chardonnay. Most surprisingly however, the patterns of nucleotide variation present in the Chardonnay genome indicate that Pinot noir and Gouais blanc share an extremely high degree of kinship that has resulted in the Chardonnay genome displaying characteristics that are indicative of inbreeding.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.