A comparative proteomic analysis was utilized to evaluate similarities and differences in membrane samples derived from the cariogenic bacterium Streptococcus mutans, including the wild-type strain and four mutants devoid of protein translocation machinery components, specifically ?ffh, ?yidC1, ?yidC2, or ?ffh/yidC1. The purpose of this work was to determine the extent to which the encoded proteins operate individually or in concert with one another and to identify the potential substrates of the respective pathways. Ffh is the principal protein component of the signal recognition particle (SRP), while yidC1 and yidC2 are dual paralogs encoding members of the YidC/Oxa/Alb family of membrane-localized…
DNA transformation and homology-based transcriptional silencing are frequently used to assess gene function in Phytophthora. Since unplanned side-effects of these tools are not well-characterized, we used P. infestans to study plasmid integration sites and whether knockdowns caused by homology-dependent silencing spreads to other genes. Insertions occurred both in gene-dense and gene-sparse regions but disproportionately near the 5′ ends of genes, which disrupted native coding sequences. Microhomology at the recombination site between plasmid and chromosome was common. Studies of transformants silenced for twelve different gene targets indicated that neighbors within 500-nt were often co-silenced, regardless of whether hairpin or sense constructs…
Moso bamboo is an important forest species with a variety of ecological, economic, and cultural values. However, the gene annotation information of moso bamboo is only based on the transcriptome sequencing, lacking the evidence of proteome. The lignification and fiber in moso bamboo leads to a difficulty in the extraction of protein using conventional methods, which seriously hinders research on the proteomics of moso bamboo. The purpose of this study is to establish efficient methods for extracting the total proteins from moso bamboo for following mass spectrometry-based quantitative proteome identification. Here, we have successfully established a set of efficient methods…
The mycobacterial type VII secretion system ESX-1 is responsible for the secretion of a number of proteins that play important roles during host infection. The regulation of the expression of secreted proteins is often essential to establish successful infection. Using transcriptome sequencing, we found that the abrogation of ESX-1 function in Mycobacterium marinum leads to a pronounced increase in gene expression levels of the espA operon during the infection of macrophages. In addition, the disruption of ESX-1-mediated protein secretion also leads to a specific down-regulation of the ESX-1 substrates, but not of the structural components of this system, during growth…
Algal polysaccharides are an important bacterial nutrient source and central component of marine food webs. However, cellular and ecological aspects concerning the bacterial degradation of polysaccharide mixtures, as presumably abundant in natural habitats, are poorly understood. Here, we contextualize marine polysaccharide mixtures and their bacterial utilization in several ways using the model bacterium Alteromonas macleodii 83-1, which can degrade multiple algal polysaccharides and contributes to polysaccharide degradation in the oceans. Transcriptomic, proteomic and exometabolomic profiling revealed cellular adaptations of A. macleodii 83-1 when degrading a mix of laminarin, alginate and pectin. Strain 83-1 exhibited substrate prioritization driven by catabolite repression,…
The cyanobacterium Nostoc flagelliforme is an extremophile that thrives under extraordinary desiccation and ultraviolet (UV) radiation conditions. To investigate its survival strategies, we performed whole-genome sequencing of N. flagelliforme CCNUN1 and transcriptional profiling of its field populations upon rehydration in BG11 medium. The genome of N. flagelliforme is 10.23 Mb in size and contains 10 825 predicted protein-encoding genes, making it one of the largest complete genomes of cyanobacteria reported to date. Comparative genomics analysis among 20 cyanobacterial strains revealed that genes related to DNA replication, recombination and repair had disproportionately high contributions to the genome expansion. The ability of…
Pseudomonas frederiksbergensis ERDD5:01 is a psychrotrophic bacteria isolated from the glacial stream flowing from East Rathong glacier in Sikkim Himalaya. The strain showed survivability at high altitude stress conditions like freezing, frequent freeze-thaw cycles, and UV-C radiations. The complete genome of 5,746,824?bp circular chromosome and a plasmid of 371,027?bp was sequenced to understand the genetic basis of its survival strategy. Multiple copies of cold-associated genes encoding cold active chaperons, general stress response, osmotic stress, oxidative stress, membrane/cell wall alteration, carbon storage/starvation and, DNA repair mechanisms supported its survivability at extreme cold and radiations corroborating with the bacterial physiological findings. The…
Hymenobacter nivis P3T is a heterotrophic bacterium isolated from Antarctic red snow generated by algal blooms. Despite being non-photosynthetic, H. nivis was dominantly found in the red snow environment that is exposed to high light and UV irradiation, suggesting that this species can flourish under such harsh conditions. In order to further understand the adaptive strategies on the snow surface environment of Antarctica, the genome of H. nivis P3T was sequenced and analyzed, which identified genes putatively encoding for light-reactive proteins such as proteorhodopsin, phytochrome, photolyase and several copies of cryptochromes. Culture-based experiments revealed that H. nivis P3T growth was…
Pyropia haitanensis is a high-yield commercial seaweed in China. Pyropia haitanensis farms often suffer from problems such as severe germplasm degeneration, while the mechanisms underlying resistance to abiotic stresses remain unknown because of lacking genomic information. Although many previous studies focused on using next-generation sequencing (NGS) technologies, the short-read sequences generated by NGS generally prevent the assembly of full-length transcripts, and then limit screening functional genes. In the present study, which was based on hybrid sequencing (NGS and single-molecular real-time sequencing) of the P. haitanensis thallus transcriptome, we obtained high-quality full-length transcripts with a mean length of 2998 bp and…
Ginseng is one of the well-known medicinal plants, exhibiting diverse medicinal effects. Its roots possess anticancer and antiaging properties and are being used in the medical systems of East Asian countries. It is grown in low-light and low-temperature conditions, and its growth is strongly inhibited at temperatures above 25°C. However, the molecular responses of ginseng to heat stress are currently poorly understood, especially at the protein level.We used a shotgun proteomics approach to investigate the effect of heat stress on ginseng leaves. We monitored their photosynthetic efficiency to confirm physiological responses to a high-temperature stress.The results showed a reduction in…
Ethanol-type fermentation is one of three main fermentation types in the acidogenesis of anaerobic treatment systems. Non-spore-forming Ethanoligenens is as a typical genus capable of ethanol-type fermentation in mixed culture (i.e. acetate-ethanol fermentation). This genus can produce ethanol, acetate, CO2, and H2 using carbohydrates, and has application potential in anaerobic bioprocesses. Here, the complete genome sequences and methylome of Ethanoligenens harbinense strains with different autoaggregative and coaggregative abilities were obtained using the PacBio single-molecule real-time sequencing platform. The genome size of E. harbinense strains was about 2.97-3.10?Mb with 55.5% G+C content. 3020-3153 genes were annotated, most of which were methylated…
Multidrug resistant (MDR) Acinetobacter baumannii poses a growing threat to global health. Research on Acinetobacter pathogenesis has primarily focused on pneumonia and bloodstream infections, even though one in five A. baumannii strains are isolated from urinary sites. In this study, we highlight the role of A. baumannii as a uropathogen. We develop the first A. baumannii catheter-associated urinary tract infection (CAUTI) murine model using UPAB1, a recent MDR urinary isolate. UPAB1 carries the plasmid pAB5, a member of the family of large conjugative plasmids that represses the type VI secretion system (T6SS) in multiple Acinetobacter strains. pAB5 confers niche specificity,…
Multispecies host-parasite evolution is common, but how parasites evolve after speciating remains poorly understood. Shared evolutionary history and physiology may propel species along similar evolutionary trajectories whereas pursuing different strategies can reduce competition. We test these scenarios in the economically important association between honey bees and ectoparasitic mites by sequencing the genomes of the sister mite species Varroa destructor and Varroa jacobsoni. These genomes were closely related, with 99.7% sequence identity. Among the 9,628 orthologous genes, 4.8% showed signs of positive selection in at least one species. Divergent selective trajectories were discovered in conserved chemosensory gene families (IGR, SNMP), and…
Water kefir is a slightly alcoholic and traditionally fermented beverage, which is prepared from sucrose, water, kefir grains, and dried or fresh fruits (e.g., figs). Lactobacillus (L.) nagelii, L. hordei, and Saccharomyces (S.) cerevisiae are predominant and stable lactic acid bacteria and yeasts, respectively, isolated from water kefir consortia. The growth of L. nagelii and L. hordei are improved in the presence of S. cerevisiae. In this work we demonstrate that quantitative comparative proteomics enables the investigation of interactions between LAB and yeast to predict real-time metabolic exchange in water kefir. It revealed 73 differentially expressed (DE) in L. nagelii…
Alfalfa is the most extensively cultivated forage legume. Salinity is a major environmental factor that impacts on alfalfa’s productivity. However, little is known about the molecular mechanisms underlying alfalfa responses to salinity, especially the relative contribution of the two important components of osmotic and ionic stress.In this study, we constructed the first full-length transcriptome database for alfalfa root tips under continuous NaCl and mannitol treatments for 1, 3, 6, 12, and 24?h (three biological replicates for each time points, including the control group) via PacBio Iso-Seq. This resulted in the identification of 52,787 full-length transcripts, with an average length of…