Menu
September 22, 2019  |  

Whole-genome sequence and genome annotation of Xanthomonas citri pv. mangiferaeindicae, causal agent of bacterial black spot on Mangifera indica.

A newly isolated strain XC01 was identified as Xanthomonas citri pv. mangiferaeindicae, isolated from an infected mango fruit in Guangxi, China. The complete genome sequence of XC01 was carried out using the PacBio RSII platform. The genome contains a circular chromosome with 3,865,165 bp, 3442 protein-coding genes, 53 tRNAs, and 2 rRNA operons. Phylogenetic analysis revealed that this pathogen is very close to the soybeans bacterial pustule pathogen X. citri pv. glycines CFBP 2526, with a completely different host range. The genome sequence of XC01 may shed a highlight genes with a demonstrated or proposed role in on the pathogenesis.


September 22, 2019  |  

Whole-genome comparison of high and low virulent Staphylococcus aureus isolates inducing implant-associated bone infections.

Staphylococcus aureus can cause wide range of infections from simple soft skin infections to severe endocarditis, bacteremia, osteomyelitis and implant associated bone infections (IABI). The focus of the present investigation was to study virulence properties of S. aureus isolates from acute and chronic IABI by means of their in vivo lethality, in vitro osteoblasts invasion, biofilm formation and subsequently whole genome comparison between high and low virulent strains. Application of insect infection model Galleria mellonella revealed high, intermediate and low virulence phenotypes of these clinical isolates, which showed good correlation with osteoblast invasion and biofilm formation assays. Comparative genomics of selected high (EDCC 5458) and low (EDCC 5464) virulent strains enabled the identification of molecular factors responsible for the development of acute and chronic IABI. Accordingly, the low virulent strain EDCC 5464 harbored point mutations resulting in frame shift mutations in agrC (histidine kinase in agr system), graS (histidine kinase in graSR, a two component system) and efeB (peroxidase in efeOBU operon, an iron acquisition system) genes. Additionally, we found a mobile element (present 11 copies in EDCC 5464) inserted at the end of ß-hemolysin (hlb) and sarU genes, which are involved in the pathogenesis and regulation of virulence gene expression in coordination with quorum sensing system. All these results are in good support with the low virulence behavior of EDCC 5464. From the previous literature, it is well known that agr defective S. aureus clinical strains are isolated from the chronic infections. Similarly, low virulent EDCC 5464 was isolated from chronic implant-associated bone infections infection whereas EDCC 5458 was obtained from acute implant-associated bone infections. Laboratory based in vitro and in vivo results and insights from comparative genomic analysis could be correlated with the clinical conclusion of IABIs and allows evidence-based treatment strategies based on the pathogenesis of the strain to cure life devastating implant-associated infections. Copyright © 2018 Elsevier GmbH. All rights reserved.


September 22, 2019  |  

Complete genome sequencing of exopolysaccharide-producing Lactobacillus plantarum K25 provides genetic evidence for the probiotic functionality and cold endurance capacity of the strain.

Lactobacillus plantarum (L. plantarum) K25 is a probiotic strain isolated from Tibetan kefir. Previous studies showed that this exopolysaccharide (EPS)-producing strain was antimicrobial active and cold tolerant. These functional traits were evidenced by complete genome sequencing of strain K25 with a circular 3,175,846-bp chromosome and six circular plasmids, encoding 3365 CDSs, 16 rRNA genes and 70 tRNA genes. Genomic analysis of L. plantarum K25 illustrates that this strain contains the previous reported mechanisms of probiotic functionality and cold tolerance, involving plantaricins, lysozyme, bile salt hydrolase, chaperone proteins, osmoprotectant, oxidoreductase, EPSs and terpenes. Interestingly, strain K25 harbors more genes that function in defense mechanisms, and lipid transport and metabolism, in comparison with other L. plantarum strains reported. The present study demonstrates the comprehensive analysis of genes related to probiotic functionalities of an EPS-producing L. plantarum strain based on whole genome sequencing.


September 22, 2019  |  

Genome biology of a novel lineage of planctomycetes widespread in anoxic aquatic environments.

Anaerobic strains affiliated with a novel order-level lineage of the Phycisphaerae class were retrieved from the suboxic zone of a hypersaline cyanobacterial mat and anoxic sediments of solar salterns. Genome sequences of five isolates were obtained and compared with metagenome-assembled genomes representing related uncultured bacteria from various anoxic aquatic environments. Gene content surveys suggest a strictly fermentative saccharolytic metabolism for members of this lineage, which could be confirmed by the phenotypic characterization of isolates. Genetic analyses indicate that the retrieved isolates do not have a canonical origin of DNA replication, but initiate chromosome replication at alternative sites possibly leading to an accelerated evolution. Further potential factors driving evolution and speciation within this clade include genome reduction by metabolic specialization and rearrangements of the genome by mobile genetic elements, which have a high prevalence in strains from hypersaline sediments and mats. Based on genetic and phenotypic data a distinct group of strictly anaerobic heterotrophic planctomycetes within the Phycisphaerae class could be assigned to a novel order that is represented by the proposed genus Sedimentisphaera gen. nov. comprising two novel species, S. salicampi gen. nov., sp. nov. and S. cyanobacteriorum gen. nov., sp. nov.© 2018 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.


September 22, 2019  |  

Evolutionary trade-offs associated with loss of PmrB function in host-adapted Pseudomonas aeruginosa.

Pseudomonas aeruginosa colonises the upper airway of cystic fibrosis (CF) patients, providing a reservoir of host-adapted genotypes that subsequently establish chronic lung infection. We previously experimentally-evolved P. aeruginosa in a murine model of respiratory tract infection and observed early-acquired mutations in pmrB, encoding the sensor kinase of a two-component system that promoted establishment and persistence of infection. Here, using proteomics, we show downregulation of proteins involved in LPS biosynthesis, antimicrobial resistance and phenazine production in pmrB mutants, and upregulation of proteins involved in adherence, lysozyme resistance and inhibition of the chloride ion channel CFTR, relative to wild-type strain LESB65. Accordingly, pmrB mutants are susceptible to antibiotic treatment but show enhanced adherence to airway epithelial cells, resistance to lysozyme treatment, and downregulate host CFTR expression. We propose that P. aeruginosa pmrB mutations in CF patients are subject to an evolutionary trade-off, leading to enhanced colonisation potential, CFTR inhibition, and resistance to host defences, but also to increased susceptibility to antibiotics.


September 22, 2019  |  

Genomic comparison of highly virulent, moderately virulent, and avirulent strains from a genetically closely-related MRSA ST239 sub-lineage provides insights into pathogenesis.

The genomic comparison of virulent (TW20), moderately virulent (CMRSA6/CMRSA3), and avirulent (M92) strains from a genetically closely-related MRSA ST239 sub-lineage revealed striking similarities in their genomes and antibiotic resistance profiles, despite differences in virulence and pathogenicity. The main differences were in the spa gene (coding for staphylococcal protein A), lpl genes (coding for lipoprotein-like membrane proteins), cta genes (genes involved in heme synthesis), and the dfrG gene (coding for a trimethoprim-resistant dihydrofolate reductase), as well as variations in the presence or content of some prophages and plasmids, which could explain the virulence differences of these strains. TW20 was positive for all genetic traits tested, compared to CMRSA6, CMRSA3, and M92. The major components differing among these strains included spa and lpl with TW20 carrying both whereas CMRSA6/CMRSA3 carry spa identical to TW20 but have a disrupted lpl. M92 is devoid of both these traits. Considering the role played by these components in innate immunity and virulence, it is predicted that since TW20 has both the components intact and functional, these traits contribute to its pathogenesis. However, CMRSA6/CMRSA3 are missing one of these components, hence their intermediately virulent nature. On the contrary, M92 is completely devoid of both the spa and lpl genes and is avirulent. Mobile genetic elements play a potential role in virulence. TW20 carries three prophages (?Sa6, ?Sa3, and ?SPß-like), a pathogenicity island and two plasmids. CMRSA6, CMRSA3, and M92 contain variations in one or more of these components. The virulence associated genes in these components include staphylokinase, entertoxins, antibiotic/antiseptic/heavy metal resistance and bacterial persistence. Additionally, there are many hypothetical proteins (present with variations among strains) with unknown function in these mobile elements which could be making an important contribution in the virulence of these strains. The above mentioned repertoire of virulence components in TW20 likely contributes to its increased virulence, while the absence and/or modification of one or more of these components in CMRSA6/CMRSA3 and M92 likely affects the virulence of the strains.


September 22, 2019  |  

Draft genome sequence of an NDM-1-, OXA-421- and AmpC-producing Acinetobacter pittii ST220 in Anhui Province, China.

Acinetobacter pittii carrying the blaNDM-1 gene is frequently reported in the world recently, however most of the blaNDM-1 genes are located on plasmids. Here we report a multidrug-resistant (MDR) A. pittii isolated in China co-harbouring blaNDM-1, blaOXA-421 and blaAmpC in the genome.Bacterial genomic DNA was extracted using the cetyl trimethylammonium bromide (CTAB) method. Whole-genome sequencing of A. pittii was performed using an Illumina MiSeq system (2×251bp) in combination with PacBio single-molecule real-time (SMRT) sequencing. De novo genome assembly was performed using SPAdes v.3.9.0, A5-miseq v.20150522 and Canu v.1.4, respectively. The genome sequence was analysed by bioinformatics methods.The 4211131-bp genome with 38.99% G+C content displayed several resistance genes, including blaNDM-1, blaOXA-421 and blaAmpC. Meanwhile, 4426 protein-coding sequences were predicted within the genome.The genome sequence reported here can be compared with the already published genomes of NDM-1-producing isolates. These data might facilitate further understanding of the specific genomic feature of MDR A. pittii in China. Copyright © 2018 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.


September 22, 2019  |  

An outbreak of a rare Shiga-toxin-producing Escherichia coli serotype (O117:H7) among men who have sex with men.

Sexually transmissible enteric infections (STEIs) are commonly associated with transmission among men who have sex with men (MSM). In the past decade, the UK has experienced multiple parallel STEI emergences in MSM caused by a range of bacterial species of the genus Shigella, and an outbreak of an uncommon serotype (O117?:?H7) of Shiga-toxin-producing Escherichia coli (STEC). Here, we used microbial genomics on 6 outbreak and 30 sporadic STEC O117?:?H7 isolates to explore the origins and pathogenic drivers of the STEC O117?:?H7 emergence in MSM. Using genomic epidemiology, we found that the STEC O117?:?H7 outbreak lineage was potentially imported from Latin America and likely continues to circulate both in the UK MSM population and in Latin America. We found genomic relationships consistent with existing symptomatic evidence for chronic infection with this STEC serotype. Comparative genomic analysis indicated the existence of a novel Shiga toxin 1-encoding prophage in the outbreak isolates, and evidence of horizontal gene exchange among the STEC O117?:?H7 outbreak lineage and other enteric pathogens. There was no evidence of increased virulence in the outbreak strains relative to contextual isolates, but the outbreak lineage was associated with azithromycin resistance. Comparing these findings with similar genomic investigations of emerging MSM-associated Shigella in the UK highlighted many parallels, the most striking of which was the importance of the azithromycin phenotype for STEI emergence in this patient group.


September 22, 2019  |  

Genomes of ubiquitous marine and hypersaline Hydrogenovibrio, Thiomicrorhabdus and Thiomicrospira spp. encode a diversity of mechanisms to sustain chemolithoautotrophy in heterogeneous environments.

Chemolithoautotrophic bacteria from the genera Hydrogenovibrio, Thiomicrorhabdus and Thiomicrospira are common, sometimes dominant, isolates from sulfidic habitats including hydrothermal vents, soda and salt lakes and marine sediments. Their genome sequences confirm their membership in a deeply branching clade of the Gammaproteobacteria. Several adaptations to heterogeneous habitats are apparent. Their genomes include large numbers of genes for sensing and responding to their environment (EAL- and GGDEF-domain proteins and methyl-accepting chemotaxis proteins) despite their small sizes (2.1-3.1 Mbp). An array of sulfur-oxidizing complexes are encoded, likely to facilitate these organisms’ use of multiple forms of reduced sulfur as electron donors. Hydrogenase genes are present in some taxa, including group 1d and 2b hydrogenases in Hydrogenovibrio marinus and H. thermophilus MA2-6, acquired via horizontal gene transfer. In addition to high-affinity cbb3 cytochrome c oxidase, some also encode cytochrome bd-type quinol oxidase or ba3 -type cytochrome c oxidase, which could facilitate growth under different oxygen tensions, or maintain redox balance. Carboxysome operons are present in most, with genes downstream encoding transporters from four evolutionarily distinct families, which may act with the carboxysomes to form CO2 concentrating mechanisms. These adaptations to habitat variability likely contribute to the cosmopolitan distribution of these organisms.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.


September 22, 2019  |  

Transcriptome analysis of Neisseria gonorrhoeae during natural infection reveals differential expression of antibiotic resistance determinants between men and women.

Neisseria gonorrhoeae is a bacterial pathogen responsible for the sexually transmitted infection gonorrhea. Emergence of antimicrobial resistance (AMR) of N. gonorrhoeae worldwide has resulted in limited therapeutic choices for this infection. Men who seek treatment often have symptomatic urethritis; in contrast, gonococcal cervicitis in women is usually minimally symptomatic, but may progress to pelvic inflammatory disease. Previously, we reported the first analysis of gonococcal transcriptome expression determined in secretions from women with cervical infection. Here, we defined gonococcal global transcriptional responses in urethral specimens from men with symptomatic urethritis and compared these with transcriptional responses in specimens obtained from women with cervical infections and in vitro-grown N. gonorrhoeae isolates. This is the first comprehensive comparison of gonococcal gene expression in infected men and women. RNA sequencing analysis revealed that 9.4% of gonococcal genes showed increased expression exclusively in men and included genes involved in host immune cell interactions, while 4.3% showed increased expression exclusively in women and included phage-associated genes. Infected men and women displayed comparable antibiotic-resistant genotypes and in vitro phenotypes, but a 4-fold higher expression of the Mtr efflux pump-related genes was observed in men. These results suggest that expression of AMR genes is programed genotypically and also driven by sex-specific environments. Collectively, our results indicate that distinct N. gonorrhoeae gene expression signatures are detected during genital infection in men and women. We propose that therapeutic strategies could target sex-specific differences in expression of antibiotic resistance genes.IMPORTANCE Recent emergence of antimicrobial resistance of Neisseria gonorrhoeae worldwide has resulted in limited therapeutic choices for treatment of infections caused by this organism. We performed global transcriptomic analysis of N. gonorrhoeae in subjects with gonorrhea who attended a Nanjing, China, sexually transmitted infection (STI) clinic, where antimicrobial resistance of N. gonorrhoeae is high and increasing. We found that N. gonorrhoeae transcriptional responses to infection differed in genital specimens taken from men and women, particularly antibiotic resistance gene expression, which was increased in men. These sex-specific findings may provide a new approach to guide therapeutic interventions and preventive measures that are also sex specific while providing additional insight to address antimicrobial resistance of N. gonorrhoeae. Copyright © 2018 Nudel et al.


September 22, 2019  |  

Extensive genomic diversity among Mycobacterium marinum strains revealed by whole genome sequencing.

Mycobacterium marinum is the causative agent for the tuberculosis-like disease mycobacteriosis in fish and skin lesions in humans. Ubiquitous in its geographical distribution, M. marinum is known to occupy diverse fish as hosts. However, information about its genomic diversity is limited. Here, we provide the genome sequences for 15 M. marinum strains isolated from infected humans and fish. Comparative genomic analysis of these and four available genomes of the M. marinum strains M, E11, MB2 and Europe reveal high genomic diversity among the strains, leading to the conclusion that M. marinum should be divided into two different clusters, the “M”- and the “Aronson”-type. We suggest that these two clusters should be considered to represent two M. marinum subspecies. Our data also show that the M. marinum pan-genome for both groups is open and expanding and we provide data showing high number of mutational hotspots in M. marinum relative to other mycobacteria such as Mycobacterium tuberculosis. This high genomic diversity might be related to the ability of M. marinum to occupy different ecological niches.


September 22, 2019  |  

Characterization of LE3 and LE4, the only lytic phages known to infect the spirochete Leptospira.

Leptospira is a phylogenetically unique group of bacteria, and includes the causative agents of leptospirosis, the most globally prevalent zoonosis. Bacteriophages in Leptospira are largely unexplored. To date, a genomic sequence is available for only one temperate leptophage called LE1. Here, we sequenced and analysed the first genomes of the lytic phages LE3 and LE4 that can infect the saprophyte Leptospira biflexa using the lipopolysaccharide O-antigen as receptor. Bioinformatics analysis showed that the 48-kb LE3 and LE4 genomes are similar and contain 62% genes whose function cannot be predicted. Mass spectrometry led to the identification of 21 and 23 phage proteins in LE3 and LE4, respectively. However we did not identify significant similarities with other phage genomes. A search for prophages close to LE4 in the Leptospira genomes allowed for the identification of a related plasmid in L. interrogans and a prophage-like region in the draft genome of a clinical isolate of L. mayottensis. Long-read whole genome sequencing of the L. mayottensis revealed that the genome contained a LE4 phage-like circular plasmid. Further isolation and genomic comparison of leptophages should reveal their role in the genetic evolution of Leptospira.


September 22, 2019  |  

Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation.

Interactions between bacteria and fungi have great environmental, medical, and agricultural importance, but the molecular mechanisms are largely unknown. Here, we study the interactions between the bacterium Pseudomonas piscium, from the wheat head microbiome, and the plant pathogenic fungus Fusarium graminearum. We show that a compound secreted by the bacteria (phenazine-1-carboxamide) directly affects the activity of fungal protein FgGcn5, a histone acetyltransferase of the SAGA complex. This leads to deregulation of histone acetylation at H2BK11, H3K14, H3K18, and H3K27 in F. graminearum, as well as suppression of fungal growth, virulence, and mycotoxin biosynthesis. Therefore, an antagonistic bacterium can inhibit growth and virulence of a plant pathogenic fungus by manipulating fungal histone modification.


September 22, 2019  |  

The complete methylome of an entomopathogenic bacterium reveals the existence of loci with unmethylated adenines.

DNA methylation can serve to control diverse phenomena in eukaryotes and prokaryotes, including gene regulation leading to cell differentiation. In bacteria, DNA methylomes (i.e., methylation state of each base of the whole genome) have been described for several species, but methylome profile variation during the lifecycle has rarely been studied, and only in a few model organisms. Moreover, major phenotypic changes have been reported in several bacterial strains with a deregulated methyltransferase, but the corresponding methylome has rarely been described. Here we report the first methylome description of an entomopathogenic bacterium, Photorhabdus luminescens. Eight motifs displaying a high rate of methylation (>94%) were identified. The methylome was strikingly stable over course of growth, but also in a subpopulation responsible for a critical step in the bacterium’s lifecycle: successful survival and proliferation in insects. The rare unmethylated GATC motifs were preferentially located in putative promoter regions, and most of them were methylated after Dam methyltransferase overexpression, suggesting that DNA methylation is involved in gene regulation. Our findings bring key insight into bacterial methylomes and encourage further research to decipher the role of loci protected from DNA methylation in gene regulation.


September 22, 2019  |  

Complete genome of streamlined marine actinobacterium Pontimonas salivibrio strain CL-TW6T adapted to coastal planktonic lifestyle.

Pontimonas salivibrio strain CL-TW6T (=KCCM 90105?=?JCM18206) was characterized as the type strain of a new genus within the Actinobacterial family Microbacteriaceae. It was isolated from a coastal marine environment in which members of Microbactericeae have not been previously characterized.The genome of P. salivibrio CL-TW6T was a single chromosome of 1,760,810 bp. Genomes of this small size are typically found in bacteria growing slowly in oligotrophic zones and said to be streamlined. Phylogenetic analysis showed it to represent a lineage originating in the Microbacteriaceae radiation occurring before the snowball Earth glaciations, and to have a closer relationship with some streamlined bacteria known through metagenomic data. Several genomic characteristics typical of streamlined bacteria are found: %G?+?C is lower than non-streamlined members of the phylum; there are a minimal number of rRNA and tRNA genes, fewer paralogs in most gene families, and only two sigma factors; there is a noticeable absence of some nonessential metabolic pathways, including polyketide synthesis and catabolism of some amino acids. There was no indication of any phage genes or plasmids, however, a system of active insertion elements was present. P. salivibrio appears to be unusual in having polyrhamnose-based cell wall oligosaccharides instead of mycolic acid or teichoic acid-based oligosaccharides. Oddly, it conducts sulfate assimilation apparently for sulfating cell wall components, but not for synthesizing amino acids. One gene family it has more of, rather than fewer of, are toxin/antitoxin systems, which are thought to down-regulate growth during nutrient deprivation or other stressful conditions.Because of the relatively small number of paralogs and its relationship to the heavily characterized Mycobacterium tuberculosis, we were able to heavily annotate the genome of P. salivibrio CL-TW6T. Its streamlined status and relationship to streamlined metagenomic constructs makes it an important reference genome for study of the streamlining concept. The final evolutionary trajectory of CL-TW6 T was to adapt to growth in a non-oligotrophic coastal zone. To understand that adaptive process, we give a thorough accounting of gene content, contrasting with both oligotrophic streamlined bacteria and large genome bacteria, and distinguishing between genes derived by vertical and horizontal descent.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.