April 21, 2020  |  

Genome Sequence of Rhizobium jaguaris CCGE525T, a Strain Isolated from Calliandra grandiflora Nodules from a Rain Forest in Mexico.

We present the genome sequence of Rhizobium jaguaris CCGE525T, a nitrogen-fixing bacterium isolated from nodules of Calliandra grandiflora. CCGE525T belongs to Rhizobium tropici group A, represents the symbiovar calliandrae, and forms nitrogen-fixing nodules in Phaseolus vulgaris. Genome-based metrics and phylogenomic approaches support Rhizobium jaguaris as a novel species.


April 21, 2020  |  

Reconstruction of the genomes of drug-resistant pathogens for outbreak investigation through metagenomic sequencing

Culture-independent methods that target genome fragments have shown promise in identifying certain pathogens, but the holy grail of comprehensive pathogen genome detection from microbiologically complex samples for subsequent forensic analyses remains a challenge. In the context of an investigation of a nosocomial outbreak, we used shotgun metagenomic sequencing of a human fecal sample and a neural network algorithm based on tetranucleotide frequency profiling to reconstruct microbial genomes and tested the same approach using rectal swabs from a second patient. The approach rapidly and readily detected the genome of Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae in the patient fecal specimen and in the rectal swab sample, achieving a level of strain resolution that was sufficient for confident transmission inference during a highly clonal outbreak. The analysis also detected previously unrecognized colonization of the patient by vancomycin-resistant Enterococcus faecium, another multidrug-resistant bacterium.IMPORTANCE The study results reported here perfectly demonstrate the power and promise of clinical metagenomics to recover genome sequences of important drug-resistant bacteria and to rapidly provide rich data that inform outbreak investigations and treatment decisions, independently of the need to culture the organisms.


April 21, 2020  |  

Genome mining identifies cepacin as a plant-protective metabolite of the biopesticidal bacterium Burkholderia ambifaria.

Beneficial microorganisms are widely used in agriculture for control of plant pathogens, but a lack of efficacy and safety information has limited the exploitation of multiple promising biopesticides. We applied phylogeny-led genome mining, metabolite analyses and biological control assays to define the efficacy of Burkholderia ambifaria, a naturally beneficial bacterium with proven biocontrol properties but potential pathogenic risk. A panel of 64 B.?ambifaria strains demonstrated significant antimicrobial activity against priority plant pathogens. Genome sequencing, specialized metabolite biosynthetic gene cluster mining and metabolite analysis revealed an armoury of known and unknown pathways within B.?ambifaria. The biosynthetic gene cluster responsible for the production of the metabolite cepacin was identified and directly shown to mediate protection of germinating crops against Pythium damping-off disease. B.?ambifaria maintained biopesticidal protection and overall fitness in the soil after deletion of its third replicon, a non-essential plasmid associated with virulence in Burkholderia?cepacia complex bacteria. Removal of the third replicon reduced B.?ambifaria persistence in a murine respiratory infection model. Here, we show that by using interdisciplinary phylogenomic, metabolomic and functional approaches, the mode of action of natural biological control agents related to pathogens can be systematically established to facilitate their future exploitation.


April 21, 2020  |  

Human contamination in bacterial genomes has created thousands of spurious proteins.

Contaminant sequences that appear in published genomes can cause numerous problems for downstream analyses, particularly for evolutionary studies and metagenomics projects. Our large-scale scan of complete and draft bacterial and archaeal genomes in the NCBI RefSeq database reveals that 2250 genomes are contaminated by human sequence. The contaminant sequences derive primarily from high-copy human repeat regions, which themselves are not adequately represented in the current human reference genome, GRCh38. The absence of the sequences from the human assembly offers a likely explanation for their presence in bacterial assemblies. In some cases, the contaminating contigs have been erroneously annotated as containing protein-coding sequences, which over time have propagated to create spurious protein “families” across multiple prokaryotic and eukaryotic genomes. As a result, 3437 spurious protein entries are currently present in the widely used nr and TrEMBL protein databases. We report here an extensive list of contaminant sequences in bacterial genome assemblies and the proteins associated with them. We found that nearly all contaminants occurred in small contigs in draft genomes, which suggests that filtering out small contigs from draft genome assemblies may mitigate the issue of contamination while still keeping nearly all of the genuine genomic sequences. © 2019 Breitwieser et al.; Published by Cold Spring Harbor Laboratory Press.


April 21, 2020  |  

Complete Genome Sequence of Actinosynnema pretiosum X47, An Industrial Strain that Produces the Antibiotic Ansamitocin AP-3.

Ansamitocins are extraordinarily potent antitumor agents. Ansamitocin P-3 (AP-3), which is produced by Actinosynnema pretiosum, has been developed as a cytotoxic drug for breast cancer. Despite its importance, AP-3 is of limited applicability because of the low production yield. A. pretiosum strain X47 was developed from A. pretiosum ATCC 31565 by mutation breeding and shows a relatively high AP-3 yield. Here, we analyzed the A. pretiosum X47 genome, which is ~8.13 Mb in length with 6693 coding sequences, 58 tRNA genes, and 15 rRNA genes. The DNA sequence of the ansamitocin biosynthetic gene cluster is highly similar to that of the corresponding cluster in A. pretiosum ATCC 31565, with 99.9% identity. However, RT-qPCR analysis showed that the expression levels of ansamitocin biosynthetic genes were significantly increased in X47 compared with the levels in the wild-type strain, consistent with the higher yield of AP-3 in X47. The annotated complete genome sequence of this strain will facilitate understanding the molecular mechanisms of ansamitocin biosynthesis and regulation in A. pretiosum and help further genetic engineering studies to enhance the production of AP-3.


April 21, 2020  |  

Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides.

Algal polysaccharides are an important bacterial nutrient source and central component of marine food webs. However, cellular and ecological aspects concerning the bacterial degradation of polysaccharide mixtures, as presumably abundant in natural habitats, are poorly understood. Here, we contextualize marine polysaccharide mixtures and their bacterial utilization in several ways using the model bacterium Alteromonas macleodii 83-1, which can degrade multiple algal polysaccharides and contributes to polysaccharide degradation in the oceans. Transcriptomic, proteomic and exometabolomic profiling revealed cellular adaptations of A. macleodii 83-1 when degrading a mix of laminarin, alginate and pectin. Strain 83-1 exhibited substrate prioritization driven by catabolite repression, with initial laminarin utilization followed by simultaneous alginate/pectin utilization. This biphasic phenotype coincided with pronounced shifts in gene expression, protein abundance and metabolite secretion, mainly involving CAZymes/polysaccharide utilization loci but also other functional traits. Distinct temporal changes in exometabolome composition, including the alginate/pectin-specific secretion of pyrroloquinoline quinone, suggest that substrate-dependent adaptations influence chemical interactions within the community. The ecological relevance of cellular adaptations was underlined by molecular evidence that common marine macroalgae, in particular Saccharina and Fucus, release mixtures of alginate and pectin-like rhamnogalacturonan. Moreover, CAZyme microdiversity and the genomic predisposition towards polysaccharide mixtures among Alteromonas spp. suggest polysaccharide-related traits as an ecophysiological factor, potentially relating to distinct ‘carbohydrate utilization types’ with different ecological strategies. Considering the substantial primary productivity of algae on global scales, these insights contribute to the understanding of bacteria-algae interactions and the remineralization of chemically diverse polysaccharide pools, a key step in marine carbon cycling.


April 21, 2020  |  

Transmission of ciprofloxacin resistance in Salmonella mediated by a novel type of conjugative helper plasmids.

Ciprofloxacin resistance in Salmonella has been increasingly reported due to the emergence and dissemination of multiple Plasmid-Mediated Quinolone Resistance (PMQR) determinants, which are mainly located in non-conjugative plasmids or chromosome. In this study, we aimed to depict the molecular mechanisms underlying the rare phenomenon of horizontal transfer of ciprofloxacin resistance phenotype in Salmonella by conjugation experiments, S1-PFGE and complete plasmid sequencing. Two types of non-conjugative plasmids, namely an IncX1 type carrying a qnrS1 gene, and an IncH1 plasmid carrying the oqxAB-qnrS gene, both ciprofloxacin resistance determinants in Salmonella, were recovered from two Salmonella strains. Importantly, these non-conjugative plasmids could be fused with a novel Incl1 type conjugative helper plasmid, which could target insertion sequence (IS) elements located in the non-conjugative, ciprofloxacin-resistance-encoding plasmid through replicative transcription, eventually forming a hybrid conjugative plasmid transmissible among members of Enterobacteriaceae. Since our data showed that such conjugative helper plasmids are commonly detectable among clinical Salmonella strains, particularly S. Typhimurium, fusion events leading to generation and enhanced dissemination of conjugative ciprofloxacin resistance-encoding plasmids in Salmonella are expected to result in a sharp increase in the incidence of resistance to fluoroquinolone, the key choice for treating life-threatening Salmonella infections, thereby posing a serious public health threat.


April 21, 2020  |  

Streptococcus periodonticum sp. nov., Isolated from Human Subgingival Dental Plaque of Periodontitis Lesion.

A novel facultative anaerobic and Gram-stain-positive coccus, designated strain ChDC F135T, was isolated from human subgingival dental plaque of periodontitis lesion and was characterized by polyphasic taxonomic analysis. The 16S rRNA gene (16S rDNA) sequence of strain ChDC F135T was closest to that of Streptococcus sinensis HKU4T (98.2%), followed by Streptococcus intermedia SK54T (97.0%), Streptococcus constellatus NCTC11325T (96.0%), and Streptococcus anginosus NCTC 10713T (95.7%). In contrast, phylogenetic analysis based on the superoxide dismutase gene (sodA) and the RNA polymerase beta-subunit gene (rpoB) showed that the nucleotide sequence similarities of strain ChDC F135T were highly similar to the corresponding genes of S. anginosus NCTC 10713T (99.2% and 97.6%, respectively), S. constellatus NCTC11325T (87.8% and 91.4%, respectively), and S. intermedia SK54T (85.8% and 91.2%, respectively) rather than those of S. sinensis HKU4T (80.5% and 82.6%). The complete genome of strain ChDC F135T consisted of 1,901,251 bp and the G+C content was 38.9 mol %. Average nucleotide identity value between strain ChDC F135T and S. sinensis HKU4T or S. anginosus NCTC 10713T were 75.7% and 95.6%, respectively. The C14:0 composition of the cellular fatty acids of strain ChDC F135T (32.8%) was different from that of S. intermedia (6-8%), S. constellatus (6-13%), and S. anginosus (13-20%). Based on the results of phylogenetic and phenotypic analysis, strain ChDC F135T (=?KCOM 2412T?=?JCM 33300T) was classified as a type strain of a novel species of the genus Streptococcus, for which we proposed the name Streptococcus periodonticum sp. nov.


April 21, 2020  |  

Streptococcus gwangjuense sp. nov., Isolated from Human Pericoronitis.

A novel facultative anaerobic, Gram-stain-negative coccus, designated strain ChDC B345T, was isolated from human pericoronitis lesion and was characterized by polyphasic taxonomic analysis. The 16S ribosomal RNA gene (16S rDNA) sequence revealed that the strain belonged to the genus Streptococcus. The 16S rDNA sequence of strain ChDC B345T was most closely related to those of  Streptococcus mitis NCTC 12261T (99.5%) and Streptococcus pseudopneumoniae ATCC BAA-960T (99.5%). Complete genome of strain ChDC B345T was 1,972,471 bp in length and the G?+?C content was 40.2 mol%. Average nucleotide identity values between strain ChDC B345T and S. pseudopneumoniae ATCC BAA-960T or S. mitis NCTC 12261T were 92.17% and 93.63%, respectively. Genome-to-genome distance values between strain ChDC B345T and S. pseudopneumoniae ATCC BAA-960T or S. mitis NCTC 12261T were 47.8% (45.2-50.4%) and 53.0% (51.0-56.4%), respectively. Based on these results, strain ChDC B345T (=?KCOM 1679T?=?JCM 33299T) should be classified as a novel species of genus Streptococcus, for which we propose the name Streptococcus gwangjuense sp. nov.


April 21, 2020  |  

Genomic Survey of Bordetella pertussis Diversity, United States, 2000-2013.

We characterized 170 complete genome assemblies from clinical Bordetella pertussis isolates representing geographic and temporal diversity in the United States. These data capture genotypic shifts, including increased pertactin deficiency, occurring amid the current pertussis disease resurgence and provide a foundation for needed research to direct future public health control strategies.


April 21, 2020  |  

Conventional culture methods with commercially available media unveil the presence of novel culturable bacteria.

Recent metagenomic analysis has revealed that our gut microbiota plays an important role in not only the maintenance of our health but also various diseases such as obesity, diabetes, inflammatory bowel disease, and allergy. However, most intestinal bacteria are considered ‘unculturable’ bacteria, and their functions remain unknown. Although culture-independent genomic approaches have enabled us to gain insight into their potential roles, culture-based approaches are still required to understand their characteristic features and phenotypes. To date, various culturing methods have been attempted to obtain these ‘unculturable’ bacteria, but most such methods require advanced techniques. Here, we have tried to isolate possible unculturable bacteria from a healthy Japanese individual by using commercially available media. A 16S rRNA (ribosomal RNA) gene metagenomic analysis revealed that each culture medium showed bacterial growth depending on its selective features and a possibility of the presence of novel bacterial species. Whole genome sequencing of these candidate strains suggested the isolation of 8 novel bacterial species classified in the Actinobacteria and Firmicutes phyla. Our approach indicates that a number of intestinal bacteria hitherto considered unculturable are potentially culturable and can be cultured on commercially available media. We have obtained novel gut bacteria from a healthy Japanese individual using a combination of comprehensive genomics and conventional culturing methods. We would expect that the discovery of such novel bacteria could illuminate pivotal roles for the gut microbiota in association with human health.


April 21, 2020  |  

Genomic and Functional Characterization of the Endophytic Bacillus subtilis 7PJ-16 Strain, a Potential Biocontrol Agent of Mulberry Fruit Sclerotiniose.

Bacillus sp. 7PJ-16, an endophytic bacterium isolated from a healthy mulberry stem and previously identified as Bacillus tequilensis 7PJ-16, exhibits strong antifungal activity and has the capacity to promote plant growth. This strain was studied for its effectiveness as a biocontrol agent to reduce mulberry fruit sclerotiniose in the field and as a growth-promoting agent for mulberry in the greenhouse. In field studies, the cell suspension and supernatant of strain 7PJ-16 exhibited biocontrol efficacy and the lowest disease incidence was reduced down to only 0.80%. In greenhouse experiments, the cell suspension (1.0?×?106 and 1.0?×?105 CFU/mL) and the cell-free supernatant (100-fold and 1000-fold dilution) stimulated mulberry seed germination and promoted mulberry seedling growth. In addition, to accurately identify the 7PJ-16 strain and further explore the mechanisms of its antifungal and growth-promoting properties, the complete genome of this strain was sequenced and annotated. The 7PJ-16 genome is comprised of two circular plasmids and a 4,209,045-bp circular chromosome, containing 4492 protein-coding genes and 116 RNA genes. This strain was ultimately designed as Bacillus subtilis based on core genome sequence analyses using a phylogenomic approach. In this genome, we identified a series of gene clusters that function in the synthesis of non-ribosomal peptides (surfactin, fengycin, bacillibactin, and bacilysin) as well as the ribosome-dependent synthesis of tasA and bacteriocins (subtilin, subtilosin A), which are responsible for the biosynthesis of numerous antimicrobial metabolites. Additionally, several genes with function that promote plant growth, such as indole-3-acetic acid biosynthesis, the production of volatile substances, and siderophores synthesis, were also identified. The information described in this study has established a good foundation for understanding the beneficial interactions between endophytes and host plants, and facilitates the further application of B. subtilis 7PJ-16 as an agricultural biofertilizer and biocontrol agent.


April 21, 2020  |  

Complete genome sequence of Streptomyces spongiicola HNM0071T, a marine sponge-associated actinomycete producing staurosporine and echinomycin

Streptomyes spongiicola HNM0071T is a novel marine sponge-associated actinomycete with potential to produce antitumor agents including staurosporine and echinomycin. Here, we present the complete genome sequence of S. spongiicola HNM0071, which consists of a linear chromosome of 7,180,417?bp, 5669 protein coding genes, 18 rRNA genes, and 66 tRNA genes. Twenty-seven putative secondary metabolite biosynthetic gene clusters were found in the genome. Among them, the staurosporine and echinomycin gene clusters have been described completely. The complete genome information presented here will enable us to investigate the biosynthetic mechanism of two well-known antitumor antibiotics and to discover novel secondary metabolites with potential antitumor activities.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.