Menu
September 22, 2019  |  

T-independent IFN? and B cells cooperate to prevent mortality associated with disseminated Chlamydia muridarum genital tract infection.

CD4 T cells and antibody are required for optimal acquired immunity to C. muridarum genital tract infection, and T cell-mediated IFN? production is necessary to clear infection in the absence of humoral immunity. However, the role of T cell-independent immune responses during primary infection remains unclear. We investigated this question by inoculating wild-type and immune-deficient mice with C. muridarum CM001, a clonal isolate capable of enhanced extragenital replication. Genital inoculation of wild-type mice resulted in transient dissemination to the lungs and spleen that then was rapidly cleared from these organs. However, CM001 genital infection proved lethal for STAT1-/- and IFNG-/- mice, where IFN? signaling is absent, and for Rag1-/- mice that lack T and B cells, but retain innate IFN? signaling. In contrast, B cell-deficient muMT mice that can generate a Th1 response, and T cell-deficient mice with intact B cell and innate IFN? signaling survived. These data collectively indicate that IFN? prevents lethal CM001 dissemination in the absence of T cells and suggests a B cell co-requirement. Adoptive transfer of convalescent immune sera, but not naïve IgM, to Rag1-/- mice infected with CM001 significantly increased survival time, while transfer of naïve B cells completely rescued Rag1-/- mice from CM001 lethality. Protection was associated with a significant reduction in the lung chlamydial burden of genitally infected mice. These data reveal an important cooperation between T-independent B cell responses and innate IFN? in chlamydial host defense, and suggest interactions between T-independent antibody and IFN? are essential for limiting extragenital dissemination. Copyright © 2018 American Society for Microbiology.


September 22, 2019  |  

A molecular window into the biology and epidemiology of Pneumocystis spp.

Pneumocystis, a unique atypical fungus with an elusive lifestyle, has had an important medical history. It came to prominence as an opportunistic pathogen that not only can cause life-threatening pneumonia in patients with HIV infection and other immunodeficiencies but also can colonize the lungs of healthy individuals from a very early age. The genus Pneumocystis includes a group of closely related but heterogeneous organisms that have a worldwide distribution, have been detected in multiple mammalian species, are highly host species specific, inhabit the lungs almost exclusively, and have never convincingly been cultured in vitro, making Pneumocystis a fascinating but difficult-to-study organism. Improved molecular biologic methodologies have opened a new window into the biology and epidemiology of Pneumocystis. Advances include an improved taxonomic classification, identification of an extremely reduced genome and concomitant inability to metabolize and grow independent of the host lungs, insights into its transmission mode, recognition of its widespread colonization in both immunocompetent and immunodeficient hosts, and utilization of strain variation to study drug resistance, epidemiology, and outbreaks of infection among transplant patients. This review summarizes these advances and also identifies some major questions and challenges that need to be addressed to better understand Pneumocystis biology and its relevance to clinical care. Copyright © 2018 American Society for Microbiology.


September 22, 2019  |  

Evidence of non-tandemly repeated rDNAs and their intragenomic heterogeneity in Rhizophagus irregularis

Arbuscular mycorrhizal fungus (AMF) species are some of the most widespread symbionts of land plants. Our much improved reference genome assembly of a model AMF, Rhizophagus irregularis DAOM-181602 (total contigs?=?210), facilitated a discovery of repetitive elements with unusual characteristics. R. irregularis has only ten or 11 copies of complete 45S rDNAs, whereas the general eukaryotic genome has tens to thousands of rDNA copies. R. irregularis rDNAs are highly heterogeneous and lack a tandem repeat structure. These findings provide evidence for the hypothesis that rDNA heterogeneity depends on the lack of tandem repeat structures. RNA-Seq analysis confirmed that all rDNA variants are actively transcribed. Observed rDNA/rRNA polymorphisms may modulate translation by using different ribosomes depending on biotic and abiotic interactions. The non-tandem repeat structure and intragenomic heterogeneity of AMF rDNA/rRNA may facilitate successful adaptation to various environmental conditions, increasing host compatibility of these symbiotic fungi.


September 22, 2019  |  

Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae.

The rapid increase in carbapenem resistance among gram-negative bacteria has renewed focus on the importance of polymyxin antibiotics (colistin or polymyxin E). However, the recent emergence of plasmid-mediated colistin resistance determinants (mcr-1, -2, -3, -4, -5, -6, and -7), especially mcr-1, in carbapenem-resistant Enterobacteriaceae is a serious threat to global health. Here, we characterized a novel mobile colistin resistance gene, mcr-8, located on a transferrable 95,983-bp IncFII-type plasmid in Klebsiella pneumoniae. The deduced amino-acid sequence of MCR-8 showed 31.08%, 30.26%, 39.96%, 37.85%, 33.51%, 30.43%, and 37.46% identity to MCR-1, MCR-2, MCR-3, MCR-4, MCR-5, MCR-6, and MCR-7, respectively. Functional cloning indicated that the acquisition of the single mcr-8 gene significantly increased resistance to colistin in both Escherichia coli and K. pneumoniae. Notably, the coexistence of mcr-8 and the carbapenemase-encoding gene blaNDM was confirmed in K. pneumoniae isolates of livestock origin. Moreover, BLASTn analysis of mcr-8 revealed that this gene was present in a colistin- and carbapenem-resistant K. pneumoniae strain isolated from the sputum of a patient with pneumonia syndrome in the respiratory intensive care unit of a Chinese hospital in 2016. These findings indicated that mcr-8 has existed for some time and has disseminated among K. pneumoniae of both animal and human origin, further increasing the public health burden of antimicrobial resistance.


September 22, 2019  |  

Genomic characterization of extensively drug-resistant Acinetobacter baumannii strain, KAB03 belonging to ST451 from Korea.

Extensively drug-resistant (XDR) Acinetobacter baumannii strains have emerged rapidly worldwide. The antibiotic resistance characteristics of XDR A. baumannii strains show regional differences; therefore, it is necessary to analyze both genomic and proteomic characteristics of emerging XDR A. baumannii clinical strains isolated in Korea to elucidate their multidrug resistance. Here, we isolated new sequence type of XDR A. baumannii clinical strain (KAB03) from Korean hospitals and performed comprehensive genome analyses. The strain belongs to new sequence type, ST451. Single nucleotide polymorphism (SNP) analysis with other types of A. baumannii strains revealed that KAB03 has unique SNP pattern in the regions of gyrB and gpi of MLST profiles. A. baumannii KAB03 harbours three antibiotic resistance islands (AbGRI1, 2, and 3). AbGRI1 harbours two copies of Tn2006 containing blaOXA-23, which play an important role in antibiotic resistance. AbGRI2 possesses aminoglycoside resistant gene aph(3′)-Ic and class A ß-lactamase blaTEM. AbGIR3 has macrolide resistant genes and aminoglycoside resistant gene armA. A. baumannii KAB03 harbours mutations in pmrB and pmrC, which are believed to confer colistin resistance. In addition, proteomic and transcriptional analysis of KAB03 confirmed that ß-lactamases (ADC-73 and OXA-23), Ade efflux pumps (AdeIJK), outer membrane proteins (OmpA and OmpW), and colistin resistance genes (PmrCAB) were major proteins responsible for antibiotic resistance. Our proteogenomic results provide valuable information for multi-drug resistance in emerging XDR A. baumannii strains belonging to ST451. Copyright © 2018. Published by Elsevier B.V.


September 22, 2019  |  

Emergence of an XDR and carbapenemase-producing hypervirulent Klebsiella pneumoniae strain in Taiwan.

Carbapenemase-producing Klebsiella pneumoniae causes high mortality owing to the limited therapeutic options available. Here, we investigated an emergent carbapenem-resistant K. pneumoniae strain with hypervirulence found among KPC-2-producing strains in Taiwan.KPC-producing K. pneumoniae strains were collected consecutively from clinical specimens at the Taipei Veterans General Hospital between January 2012 and December 2014. Capsular types and the presence of rmpA/rmpA2 were analysed, and PFGE and MLST performed using these strains. The strain positive for rmpA/rmpA2 was tested in an in vivo mouse lethality study to verify its virulence and subjected to WGS to delineate its genomic features.A total of 62 KPC-2-producing K. pneumoniae strains were identified; all of these belonged to ST11 and capsular genotype K47. One strain isolated from a fatal case with intra-abdominal abscess (TVGHCRE225) harboured rmpA and rmpA2 genes. This strain was resistant to tigecycline and colistin, in addition to carbapenems, and did not belong to the major cluster in PFGE. TVGHCRE225 exhibited high in vivo virulence in the mouse lethality experiment. WGS showed that TVGHCRE225 acquired a novel hybrid virulence plasmid harbouring a set of virulence genes (iroBCDN, iucABCD, rmpA and rmpA2, and iutA) compared with the classic ST11 KPC-2-producing strain.We identified an XDR ST11 KPC-2-producing K. pneumoniae strain carrying a hybrid virulent plasmid in Taiwan. Active surveillance focusing on carbapenem-resistant hypervirulent K. pneumoniae strains is necessary, as the threat to human health is imminent.


September 22, 2019  |  

Comprehensive evaluation of the host responses to infection with differentially virulent classical swine fever virus strains in pigs.

Classical swine fever virus (CSFV) infection causes most variable clinical syndromes from chronic or latent infection to acute death, and it is generally acknowledged that the course of disease is affected by both virus and host factors. To compare host immune responses to differentially virulent CSFV strains in pigs, fifteen 8-week-old specific-pathogen-free pigs were randomly divided into four groups and inoculated with the CSFV Shimen strain (a highly virulent strain), the HLJZZ2014 strain (a moderately virulent strains), C-strain (an avirulent strain), and DMEM (mock control), respectively. Infection with the Shimen or HLJZZ2014 strain resulted in fever, clinical signs and histopathological lesions, which were not observed in the C-strain-inoculated pigs, though low viral genome copies were detected in the peripheral blood and tissue samples. The data showed that the virulence of the strains affected the outcome of duration and intensity of the disease rather than the tissue tropism of the virus. Furthermore, leukopenia, lymphocytopenia, differentiation of T-cells, and the secretion of cytokines associated with inflammation or apoptosis such as interferon alpha (IFN-a), tumor necrosis factor alpha (TNF-a), interleukin 2 (IL-2), IL-4, IL-6, and IL-10 were induced by the virulent CSFV infection, the differences reflected in onset and extent of the regulation. Taken together, our results revealed that the major differences among the three strains resided in the kinetics of host response to the infection: severe and immediate with the highly virulent strain, while progressive and delayed with the moderately virulent one. This comparative study will help to dissect the pathogenesis of CSFV. Copyright © 2018 Elsevier B.V. All rights reserved.


September 22, 2019  |  

Characterization of Haemophilus parasuis serovar 2 CL120103, a moderately virulent strain in China

Haemophilus parasuis is an important bacterium affecting pigs, causing Glässer’s disease. To further characterize this species, we determined the complete genomic sequence of H. parasuis CL120103, which was isolated from diseased pigs. The strain H. parasuis CL120103 was identified as serovar 2. The size of the largest scaffold is 2,326,318 bp and contains 145 large contigs, with the N50 contig being 20,573 bp in length. The complete genome of H. parasuis CL120103 is 2,305,354 bp in length with 39.97% GC content and contains 2227 protein-coding genes, 19 ribosomal rRNA operons and 60 tRNA genes. Sequence similarity of the genome of H. parasuis CL120103 to the previously sequenced genome of H. parasuis was up to 96% and query cover to 86%. Annotation of the genome of H. parasuis CL120103 identified a number of genes encoding potential virulence factors. These virulence factors are involved in metabolism, adhesion, secretion and LPS biosynthesis. These related genes pave the way to better understand mechanisms underlying metabolic capabilities. The comprehensive genetic and phylogenetic analysis shows that H. parasuis is closely related to Actinobacillus pleuropneumoniae and provides a foundation for future experimental confirmation of the virulence and pathogen-host interactions in H. parasuis.


September 22, 2019  |  

Comparative genomics of Salmonella enterica serovar Montevideo reveals lineage-specific gene differences that may influence ecological niche association.

Salmonella enterica serovar Montevideo has been linked to recent foodborne illness outbreaks resulting from contamination of products such as fruits, vegetables, seeds and spices. Studies have shown that Montevideo also is frequently associated with healthy cattle and can be isolated from ground beef, yet human salmonellosis outbreaks of Montevideo associated with ground beef contamination are rare. This disparity fuelled our interest in characterizing the genomic differences between Montevideo strains isolated from healthy cattle and beef products, and those isolated from human patients and outbreak sources. To that end, we sequenced 13 Montevideo strains to completion, producing high-quality genome assemblies of isolates from human patients (n=8) or from healthy cattle at slaughter (n=5). Comparative analysis of sequence data from this study and publicly available sequences (n=72) shows that Montevideo falls into four previously established clades, differentially occupied by cattle and human strains. The results of these analyses reveal differences in metabolic islands, environmental adhesion determinants and virulence factors within each clade, and suggest explanations for the infrequent association between bovine isolates and human illnesses.


September 22, 2019  |  

Distinct genomic features characterize two clades of Corynebacterium diphtheriae: Proposal of Corynebacterium diphtheriae subsp. diphtheriae subsp. nov. and Corynebacterium diphtheriae subsp. lausannense subsp. nov.

Corynebacterium diphtheriae is the etiological agent of diphtheria, a disease caused by the presence of the diphtheria toxin. However, an increasing number of records report non-toxigenic C. diphtheriae infections. Here, a C. diphtheriae strain was recovered from a patient with a past history of bronchiectasis who developed a severe tracheo-bronchitis with multiple whitish lesions of the distal trachea and the mainstem bronchi. Whole-genome sequencing (WGS), performed in parallel with PCR targeting the toxin gene and the Elek test, provided clinically relevant results in a short turnaround time, showing that the isolate was non-toxigenic. A comparative genomic analysis of the new strain (CHUV2995) with 56 other publicly available genomes of C. diphtheriae revealed that the strains CHUV2995, CCUG 5865 and CMCNS703 share a lower average nucleotide identity (ANI) (95.24 to 95.39%) with the C. diphtheriae NCTC 11397T reference genome than all other C. diphtheriae genomes (>98.15%). Core genome phylogeny confirmed the presence of two monophyletic clades. Based on these findings, we propose here two new C. diphtheriae subspecies to replace the lineage denomination used in previous multilocus sequence typing studies: C. diphtheriae subsp. lausannense subsp. nov. (instead of lineage-2), regrouping strains CHUV2995, CCUG 5865, and CMCNS703, and C. diphtheriae subsp. diphtheriae subsp. nov, regrouping all other C. diphtheriae in the dataset (instead of lineage-1). Interestingly, members of subspecies lausannense displayed a larger genome size than subspecies diphtheriae and were enriched in COG categories related to transport and metabolism of lipids (I) and inorganic ion (P). Conversely, they lacked all genes involved in the synthesis of pili (SpaA-type, SpaD-type and SpaH-type), molybdenum cofactor and of the nitrate reductase. Finally, the CHUV2995 genome is particularly enriched in mobility genes and harbors several prophages. The genome encodes a type II-C CRISPR-Cas locus with 2 spacers that lacks csn2 or cas4, which could hamper the acquisition of new spacers and render strain CHUV2995 more susceptible to bacteriophage infections and gene acquisition through various mechanisms of horizontal gene transfer.


September 22, 2019  |  

Prevalence and genomic structure of bacteriophage phi3 in human derived livestock-associated MRSA from 2000 to 2015.

Whereas the emergence of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) clonal complex 398 (CC398) in animal husbandry and its transmission to humans are well documented, less is known about factors driving the epidemic spread of this zoonotic lineage within the human population. One factor could be the bacteriophage phi3, which is rarely detected in S. aureus isolates from animals but commonly found among isolates from humans, including those of the human-adapted methicillin-susceptible S. aureus (MSSA) CC398 clade. The proportion of phi3-carrying MRSA spa-CC011 isolates, which constitute presumptively LA-MRSA within the multilocus sequence type (MLST) clonal complex 398, was systematically assessed for a period of 16 years to investigate the role of phi3 in the adaptation process of LA-MRSA to the human host. For this purpose, 632 MRSA spa-CC011 isolates from patients of a university hospital located in a pig farming-dense area in Germany were analyzed. Livestock-associated acquisition of MRSA spa-CC011 was previously reported as having increased from 1.8% in 2000 to 29.4% in 2014 in MRSA-positive patients admitted to this hospital. However, in this study, the proportion of phi3-carrying isolates rose only from 1.1% (2000 to 2006) to 3.9% (2007 to 2015). Characterization of the phi3 genomes revealed 12 different phage types ranging in size from 40,712 kb up to 44,003 kb, with four hitherto unknown integration sites (genes or intergenic regions) and several modified bacterial attachment (attB) sites. In contrast to the MSSA CC398 clade, phi3 acquisition seems to be no major driver for the readaptation of MRSA spa-CC011 to the human host. Copyright © 2018 American Society for Microbiology.


September 22, 2019  |  

Hepacivirus A infection in horses defines distinct envelope hypervariable regions and elucidates potential roles of viral strain and adaptive immune status in determining envelope diversity and infection outcome.

Hepacivirus A (also known as nonprimate hepacivirus and equine hepacivirus) is a hepatotropic virus that can cause both transient and persistent infections in horses. The evolution of intrahost viral populations (quasispecies) has not been studied in detail for hepacivirus A, and its roles in immune evasion and persistence are unknown. To address these knowledge gaps, we first evaluated the envelope gene (E1 and E2) diversity of two different hepacivirus A strains (WSU and CU) in longitudinal blood samples from experimentally infected adult horses, juvenile horses (foals), and foals with severe combined immunodeficiency (SCID). Persistent infection with the WSU strain was associated with significantly greater quasispecies diversity than that observed in horses who spontaneously cleared infection (P = 0.0002) or in SCID foals (P < 0.0001). In contrast, the CU strain was able to persist despite significantly lower (P < 0.0001) and relatively static envelope diversity. These findings indicate that envelope diversity is a poor predictor of hepacivirus A infection outcomes and could be dependent on strain-specific factors. Next, entropy analysis was performed on all E1/E2 genes entered into GenBank. This analysis defined three novel hypervariable regions (HVRs) in E2, at residues 391 to 402 (HVR1), 450 to 461 (HVR2), and 550 to 562 (HVR3). For the experimentally infected horses, entropy analysis focusing on the HVRs demonstrated that these regions were under increased selective pressure during persistent infection. Increased diversity in the HVRs was also temporally associated with seroconversion in some horses, suggesting that these regions may be targets of neutralizing antibody and may play a role in immune evasion.IMPORTANCE Hepacivirus C (hepatitis C virus) is estimated to infect 150 million people worldwide and is a leading cause of cirrhosis and hepatocellular carcinoma. In contrast, its closest relative, hepacivirus A, causes relatively mild disease in horses and is frequently cleared. The relationship between quasispecies evolution and infection outcome has not been explored for hepacivirus A. To address this knowledge gap, we examined envelope gene diversity in horses with resolving and persistent infections. Interestingly, two strain-specific patterns of quasispecies diversity emerged. Persistence of the WSU strain was associated with increased quasispecies diversity and the accumulation of amino acid changes within three novel hypervariable regions following seroconversion. These findings provided evidence that envelope gene mutation is influenced by adaptive immune pressure and may contribute to hepacivirus persistence. However, the CU strain persisted despite relative evolutionary stasis, suggesting that some hepacivirus strains may use alternative mechanisms to persist in the host. Copyright © 2018 American Society for Microbiology.


September 22, 2019  |  

Involvement of PorK, a component of the type IX secretion system, in Prevotella melaninogenica pathogenicity.

Prevotella melaninogenica is a gram-negative anaerobic commensal bacterium that resides in the human oral cavity and is isolated as a pathogen of suppurative diseases both inside and outside the mouth. However, little is known about the pathogenic factors of P. melaninogenica. The periodontal pathogens Porphyromonas gingivalis and Tanerella forsythia secrete virulence factors such as protease and bacterial cell surface proteins via a type IX secretion system (T9SS) that are involved in pathogenicity. P. melaninogenica also possesses all known orthologs of T9SS. In this study, a P. melaninogenica GAI 07411 mutant deficient in the orthologue of the T9SS-encoding gene, porK, was constructed. Hemagglutination and biofilm formation were decreased in the porK mutant. Furthermore, following growth on skim milk-containing medium, the diameters of the halos surrounding the porK mutant were smaller than those of the wild-type strain, suggesting a decrease in secretion of proteases outside the bacterium. To investigate this in detail, culture supernatants of wild-type and porK mutant strains were purified and compared by two-dimensional electrophoresis. In the mutant strain, fewer spots were detected, indicating fewer secreted proteins. In infection experiments, the mortality rate of mice inoculated with the porK mutant strain was significantly lower than in the wild-type strain. These results suggest that P. melaninogenica secretes potent virulence factors via the T9SS that contribute to its pathogenic ability.© 2018 The Societies and John Wiley & Sons Australia, Ltd.


September 22, 2019  |  

Antagonistic pleiotropy in the bifunctional surface protein FadL (OmpP1) during adaptation of Haemophilus influenzae to chronic lung infection associated with chronic obstructive pulmonary disease.

Tracking bacterial evolution during chronic infection provides insights into how host selection pressures shape bacterial genomes. The human-restricted opportunistic pathogen nontypeable Haemophilus influenzae (NTHi) infects the lower airways of patients suffering chronic obstructive pulmonary disease (COPD) and contributes to disease progression. To identify bacterial genetic variation associated with bacterial adaptation to the COPD lung, we sequenced the genomes of 92 isolates collected from the sputum of 13 COPD patients over 1 to 9?years. Individuals were colonized by distinct clonal types (CTs) over time, but the same CT was often reisolated at a later time or found in different patients. Although genomes from the same CT were nearly identical, intra-CT variation due to mutation and recombination occurred. Recurrent mutations in several genes were likely involved in COPD lung adaptation. Notably, nearly a third of CTs were polymorphic for null alleles of ompP1 (also called fadL), which encodes a bifunctional membrane protein that both binds the human carcinoembryonic antigen-related cell adhesion molecule 1 (hCEACAM1) receptor and imports long-chain fatty acids (LCFAs). Our computational studies provide plausible three-dimensional models for FadL’s interaction with hCEACAM1 and LCFA binding. We show that recurrent fadL mutations are likely a case of antagonistic pleiotropy, since loss of FadL reduces NTHi’s ability to infect epithelia but also increases its resistance to bactericidal LCFAs enriched within the COPD lung. Supporting this interpretation, truncated fadL alleles are common in publicly available NTHi genomes isolated from the lower airway tract but rare in others. These results shed light on molecular mechanisms of bacterial pathoadaptation and guide future research toward developing novel COPD therapeutics.IMPORTANCE Nontypeable Haemophilus influenzae is an important pathogen in patients with chronic obstructive pulmonary disease (COPD). To elucidate the bacterial pathways undergoing in vivo evolutionary adaptation, we compared bacterial genomes collected over time from 13 COPD patients and identified recurrent genetic changes arising in independent bacterial lineages colonizing different patients. Besides finding changes in phase-variable genes, we found recurrent loss-of-function mutations in the ompP1 (fadL) gene. We show that loss of OmpP1/FadL function reduces this bacterium’s ability to infect cells via the hCEACAM1 epithelial receptor but also increases its resistance to bactericidal fatty acids enriched within the COPD lung, suggesting a case of antagonistic pleiotropy that restricts ?fadL strains’ niche. These results show how H. influenzae adapts to host-generated inflammatory mediators in the COPD airways. Copyright © 2018 Moleres et al.


September 22, 2019  |  

Identification of the KPC plasmid pCT-KPC334: New insights on the evolutionary pathway of epidemic plasmids harboring fosA3-blaKPC-2 genes.

A novel, non-conjugative plasmid pKP1034 isolated from a fosfomycin-resistant, carbapenemase-producing Klebsiella pneumonia strain KP1034 was recently reported to carry fosA3, blaKPC-2, blaCTX-M-65, blaSHV-12 and rmtB genes, and was hypothesized to evolve from several recombination events of two closely related plasmids, pHN7A8 and pKPC-LK30 [1]. In this study, a plasmid pCT-KPC334 carrying fosA3, blaKPC-2, blaCTX-M-65, blaSHV-12, blaTEM-1, and rmtB genes was identified, providing evidence on the evolutionary pathway of plasmids harboring fosA3-blaKPC-2 genes.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.