April 21, 2020  |  

Transcriptional initiation of a small RNA, not R-loop stability, dictates the frequency of pilin antigenic variation in Neisseria gonorrhoeae.

Neisseria gonorrhoeae, the sole causative agent of gonorrhea, constitutively undergoes diversification of the Type IV pilus. Gene conversion occurs between one of the several donor silent copies located in distinct loci and the recipient pilE gene, encoding the major pilin subunit of the pilus. A guanine quadruplex (G4) DNA structure and a cis-acting sRNA (G4-sRNA) are located upstream of the pilE gene and both are required for pilin antigenic variation (Av). We show that the reduced sRNA transcription lowers pilin Av frequencies. Extended transcriptional elongation is not required for Av, since limiting the transcript to 32 nt allows for normal Av frequencies. Using chromatin immunoprecipitation (ChIP) assays, we show that cellular G4s are less abundant when sRNA transcription is lower. In addition, using ChIP, we demonstrate that the G4-sRNA forms a stable RNA:DNA hybrid (R-loop) with its template strand. However, modulating R-loop levels by controlling RNase HI expression does not alter G4 abundance quantified through ChIP. Since pilin Av frequencies were not altered when modulating R-loop levels by controlling RNase HI expression, we conclude that transcription of the sRNA is necessary, but stable R-loops are not required to promote pilin Av. © 2019 John Wiley & Sons Ltd.


April 21, 2020  |  

Complete genome sequence of Paracoccus sp. Arc7-R13, a silver nanoparticles synthesizing bacterium isolated from Arctic Ocean sediments

Paracoccus sp. Arc7-R13, a silver nanoparticles (AgNPs) synthesizing bacterium, was isolated from Arctic Ocean sediment. Here we describe the complete genome of Paracoccus sp. Arc7-R13. The complete genome contains 4,040,012?bp with 66.66?mol%?G?+?C content, including one circular chromosome of 3,231,929?bp (67.45?mol%?G?+?C content), and eight plasmids with length ranging from 24,536?bp to 199,685?bp. The genome contains 3835 protein-coding genes (CDSs), 49 tRNA genes, as well as 3 rRNA operons as 16S-23S-5S rRNA. Based on the gene annotation and Swiss-Prot analysis, a total of 15 genes belonging to 11 kinds, including silver exporting P-type ATPase (SilP), alkaline phosphatase, nitroreductase, thioredoxin reductase, NADPH dehydrogenase and glutathione peroxidase, might be related to the synthesis of AgNPs. Meanwhile, many additional genes associated with synthesis of AgNPs such as protein-disulfide isomerase, c-type cytochrome, glutathione synthase and dehydrogenase reductase were also identified.


April 21, 2020  |  

Comparative Genomic Analysis of Virulence, Antimicrobial Resistance, and Plasmid Profiles of Salmonella Dublin Isolated from Sick Cattle, Retail Beef, and Humans in the United States.

Salmonella enterica serovar Dublin is a host-adapted serotype associated with typhoidal disease in cattle. While rare in humans, it usually causes severe illness, including bacteremia. In the United States, Salmonella Dublin has become one of the most multidrug-resistant (MDR) serotypes. To understand the genetic elements that are associated with virulence and resistance, we sequenced 61 isolates of Salmonella Dublin (49 from sick cattle and 12 from retail beef) using the Illumina MiSeq and closed 5 genomes using the PacBio sequencing platform. Genomic data of eight human isolates were also downloaded from NCBI (National Center for Biotechnology Information) for comparative analysis. Fifteen Salmonella pathogenicity islands (SPIs) and a spv operon (spvRABCD), which encodes important virulence factors, were identified in all 69 (100%) isolates. The 15 SPIs were located on the chromosome of the 5 closed genomes, with each of these isolates also carrying 1 or 2 plasmids with sizes between 36 and 329?kb. Multiple antimicrobial resistance genes (ARGs), including blaCMY-2, blaTEM-1B, aadA12, aph(3′)-Ia, aph(3′)-Ic, strA, strB, floR, sul1, sul2, and tet(A), along with spv operons were identified on these plasmids. Comprehensive antimicrobial resistance genotypes were determined, including 17 genes encoding resistance to 5 different classes of antimicrobials, and mutations in the housekeeping gene (gyrA) associated with resistance or decreased susceptibility to fluoroquinolones. Together these data revealed that this panel of Salmonella Dublin commonly carried 15 SPIs, MDR/virulence plasmids, and ARGs against several classes of antimicrobials. Such genomic elements may make important contributions to the severity of disease and treatment failures in Salmonella Dublin infections in both humans and cattle.


April 21, 2020  |  

Plasmid-encoded tet(X) genes that confer high-level tigecycline resistance in Escherichia coli.

Tigecycline is one of the last-resort antibiotics to treat complicated infections caused by both multidrug-resistant Gram-negative and Gram-positive bacteria1. Tigecycline resistance has sporadically occurred in recent years, primarily due to chromosome-encoding mechanisms, such as overexpression of efflux pumps and ribosome protection2,3. Here, we report the emergence of the plasmid-mediated mobile tigecycline resistance mechanism Tet(X4) in Escherichia coli isolates from China, which is capable of degrading all tetracyclines, including tigecycline and the US FDA newly approved eravacycline. The tet(X4)-harbouring IncQ1 plasmid is highly transferable, and can be successfully mobilized and stabilized in recipient clinical and laboratory strains of Enterobacteriaceae bacteria. It is noteworthy that tet(X4)-positive E.?coli strains, including isolates co-harbouring mcr-1, have been widely detected in pigs, chickens, soil and dust samples in China. In vivo murine models demonstrated that the presence of Tet(X4) led to tigecycline treatment failure. Consequently, the emergence of plasmid-mediated Tet(X4) challenges the clinical efficacy of the entire family of tetracycline antibiotics. Importantly, our study raises concern that the plasmid-mediated tigecycline resistance may further spread into various ecological niches and into clinical high-risk pathogens. Collective efforts are in urgent need to preserve the potency of these essential antibiotics.


April 21, 2020  |  

Antibiotic susceptibility of plant-derived lactic acid bacteria conferring health benefits to human.

Lactic acid bacteria (LAB) confer health benefits to human when administered orally. We have recently isolated several species of LAB strains from plant sources, such as fruits, vegetables, flowers, and medicinal plants. Since antibiotics used to treat bacterial infection diseases induce the emergence of drug-resistant bacteria in intestinal microflora, it is important to evaluate the susceptibility of LAB strains to antibiotics to ensure the safety and security of processed foods. The aim of the present study is to determine the minimum inhibitory concentration (MIC) of antibiotics against several plant-derived LAB strains. When aminoglycoside antibiotics, such as streptomycin (SM), kanamycin (KM), and gentamicin (GM), were evaluated using LAB susceptibility test medium (LSM), the MIC was higher than when using Mueller-Hinton (MH) medium. Etest, which is an antibiotic susceptibility assay method consisting of a predefined gradient of antibiotic concentrations on a plastic strip, is used to determine the MIC of antibiotics world-wide. In the present study, we demonstrated that Etest was particularly valuable while testing LAB strains. We also show that the low susceptibility of the plant-derived LAB strains against each antibiotic tested is due to intrinsic resistance and not acquired resistance. This finding is based on the whole-genome sequence information reflecting the horizontal spread of the drug-resistance genes in the LAB strains.


April 21, 2020  |  

Large Fragment Deletions Induced by Cas9 Cleavage While Not in BEs System in Rabbit

CRISPR-Cas9 and BEs system are poised to become the gene editing tool of choice in clinical contexts, however large fragment deletion was found in Cas9-mediated mutation cells without animal level validation. By analyzing 16 gene-edited rabbit lines (including 112 rabbits) generated using SpCas9, BEs, xCas9 and xCas9-BEs with long-range PCR genotyping and long-read sequencing by PacBio platform, we show that extending thousands of bases fragment deletions in single-guide RNA/Cas9 and xCas9 system mutation rabbit, but few large deletions were found in BEs-induced mutation rabbits. We firstly validated that no large fragment deletion induced by BEs system at animal level, suggesting that BE systems can be beneficial tools for the further development of highly accurate and secure gene therapy for the clinical treatment of human genetic disorders


April 21, 2020  |  

Genomic analysis of Marinobacter sp. NP-4 and NP-6 isolated from the deep-sea oceanic crust on the western flank of the Mid-Atlantic Ridge

Two Marinobacter sp. NP-4 and NP-6 were isolated from a deep oceanic basaltic crust at North Pond, located at the western flank of the Mid-Atlantic Ridge. These two strains are capable of using multiple carbon sources such as acetate, succinate, glucose and sucrose while take oxygen as a primary electron acceptor. The strain NP-4 is also able to grow anaerobically under 20?MPa, with nitrate as the electron acceptor, thus represents a piezotolerant. To explore the metabolic potentials of Marinobacter sp. NP-4 and NP-6, the complete genome of NP-4 and close-to-complete genome of NP-6 were sequenced. The genome of NP-4 contains one chromosome and two plasmids with the size of 4.6?Mb in total, and with average GC content of 57.0%. The genome of NP-6 is 4.5?Mb and consists of 6 scaffolds, with an average GC content of 57.1%. Complete glycolysis, citrate cycle and aromatics compounds degradation pathways are identified in genomes of these two strains, suggesting that they possess a heterotrophic life style. Additionally, one plasmid of NP-4 contains genes for alkane degradation, phosphonate ABC transporter and cation efflux system, enabling NP-4 extra surviving abilities. In total, genomic information of these two strains provide insights into the physiological features and adaptation strategies of Marinobacter spp. in the deep oceanic crust biosphere.


April 21, 2020  |  

Complete genome sequence of Paenisporosarcina antarctica CGMCC 1.6503 T, a marine psychrophilic bacterium isolated from Antarctica

A marine psychrophilic bacterium _Paenisporosarcina antarctica_ CGMCC 1.6503T (= JCM 14646T) was isolated off King George Island, Antarctica (62°13’31? S 58°57’08? W). In this study, we report the complete genome sequence of _Paenisporosarcina antarctica_, which is comprised of 3,972,524?bp with a mean G?+?C content of 37.0%. By gene function and metabolic pathway analyses, studies showed that strain CGMCC 1.6503T encodes a series of genes related to cold adaptation, including encoding fatty acid desaturases, dioxygenases, antifreeze proteins and cold shock proteins, and possesses several two-component regulatory systems, which could assist this strain in responding to the cold stress, the oxygen stress and the osmotic stress in Antarctica. The complete genome sequence of _P. antarctica_ may provide further insights into the genetic mechanism of cold adaptation for Antarctic marine bacteria.


April 21, 2020  |  

Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans.

Tigecycline is a last-resort antibiotic that is used to treat severe infections caused by extensively drug-resistant bacteria. tet(X) has been shown to encode a flavin-dependent monooxygenase that modifies tigecycline1,2. Here, we report two unique mobile tigecycline-resistance genes, tet(X3) and tet(X4), in numerous Enterobacteriaceae and Acinetobacter that were isolated from animals, meat for consumption and humans. Tet(X3) and Tet(X4) inactivate all tetracyclines, including tigecycline and the newly FDA-approved eravacycline and omadacycline. Both tet(X3) and tet(X4) increase (by 64-128-fold) the tigecycline minimal inhibitory concentration values for Escherichia coli, Klebsiella pneumoniae and Acinetobacter baumannii. In addition, both Tet(X3) (A. baumannii) and Tet(X4) (E. coli) significantly compromise tigecycline in in vivo infection models. Both tet(X3) and tet(X4) are adjacent to insertion sequence ISVsa3 on their respective conjugative plasmids and confer a mild fitness cost (relative fitness of >0.704). Database mining and retrospective screening analyses confirm that tet(X3) and tet(X4) are globally present in clinical bacteria-even in the same bacteria as blaNDM-1, resulting in resistance to both tigecycline and carbapenems. Our findings suggest that both the surveillance of tet(X) variants in clinical and animal sectors and the use of tetracyclines in food production require urgent global attention.


April 21, 2020  |  

Whole-genome analysis of New Delhi Metallo-Beta-Lactamase-1-producing Acinetobacter haemolyticus from China.

Infections caused by multi-drug resistant Acinetobacter spp. has aroused worldwide attention. With the increasing isolation of non-baumannii Acinetobacter, the nature of infection and resistance associated with them needs to be elaborated. This study aimed to analyze the characteristics of New Delhi Metallo-Beta-Lactamase-1 (NDM-1)-producing Acinetobacter haemolyticus (named sz1652) isolated from Shenzhen city, China.Antibiotic spectrum was analyzed after antimicrobial susceptibility test. Combined disk test (CDT) was used to detecting the metallo-beta-lactamases (MBLs). Transferability of carbapenem resistance was tested by filter mating experiments and plasmid transformation assays. Whole-genome sequencing (WGS) was performed using HiSeq 2000 and PacBio RS system.The A. haemolyticus strain sz1652 was resistant to carbapenems and other tested agents except for amikacin, tigecycline and colistin. The production of MBLs was confirmed by CDT. Transfer of carbapenem resistance was not successful. WGS analysis showed the genome of sz1652 was comprised of chromosome and two plasmids, and sixteen genomic islands (GIs) were predicted. Genes associated with resistance were found in this strain including the beta-lactamase genes blaNDM-1, blaOXA-214 and blaLRA-18, the ?uoroquinolone resistant-related mutations [GyrA subunits (Ser81Ile) and ParC subunits (Ser84Tyr)], and efflux pump genes related to tetracycline and macrolide resistance. Analysis of the genetic environment showed that blaNDM-1was embedded in Tn125 transposon. The Tn125 structure was chromosomally located and shared more than 99% sequence identity with previously reported blaNDM-1 carrying region.The NDM-1-producing A.haemolyticus coexisted multiple durg-resistant determinants. The acquisition of the blaNDM-1 gene was probably facilitated by Tn125 in this strain. Non-A.baumannii species also contain GIs.Copyright © 2019. Published by Elsevier Ltd.


April 21, 2020  |  

IncC blaKPC-2-positive plasmid characterized from ST648 Escherichia coli.

This study describes the characterization of type 2 IncC plasmids pC-Ec20-KPC and pC-Ec2-KPC, carrying blaKPC-2 gene, from two multiresistant E. coli recovered in the University Hospital of Larissa, in 2018.Escherichia coli, Ec-2Lar and Ec-20Lar, were recovered from rectal swabs from two patients, during the monthly surveillance cultures. Transfer experiments by conjugation were carried out with E. coli recipients. blaKPC-carrying plasmids were characterized by S1 profiling. Isolates were typed by MLST. Whole bacterial genome was sequenced using the Sequel platform.Both E. coli isolates, belonging to ST648, transferred the blaKPC-2 to E. coli A15 laboratory strain by conjugation. Plasmid analysis revealed that the transconjugants harbored blaKPC-positive plasmids of different sizes. Analysis of plasmid sequences showed that, in both isolates, blaKPC-2 gene was carried on type 2 IncC plasmids pC-Ec20-KPC and pC-Ec2-KPC. Both plasmids carried the ARI-B resistance island, which consisted of several resistance genes, intact and truncated copies of several mobile elements, and a 25,571-bp segment harboring coding sequences for an iron transporter. The blaKPC-2 gene was part of the transposon Tn4401a, which was bounded by direct repeats of 5 bp (TCCTT) suggesting its transposition into the IncC plasmids.To our knowledge, this is the first report on complete nucleotide sequences of type 2 IncC plasmids. These findings, which hypothesize the acquisition of KPC-2-encoding transposon Tn4401a by an IncC replicon, indicate the ongoing need for molecular surveillance studies of MDR pathogens. Additionally, they underline the increasing clinical importance of the IncC plasmid family.Copyright © 2019. Published by Elsevier Ltd.


April 21, 2020  |  

Integrating multiple genomic technologies to investigate an outbreak of carbapenemase-producing Enterobacter hormaechei

Carbapenem-resistant Enterobacteriaceae (CRE) represent one of the most urgent threats to human health posed by antibiotic resistant bacteria. Enterobacter hormaechei and other members of the Enterobacter cloacae complex are the most commonly encountered Enterobacter spp. within clinical settings, responsible for numerous outbreaks and ultimately poorer patient outcomes. Here we applied three complementary whole genome sequencing (WGS) technologies to characterise a hospital cluster of blaIMP-4 carbapenemase-producing E. hormaechei.In response to a suspected CRE outbreak in 2015 within an Intensive Care Unit (ICU)/Burns Unit in a Brisbane tertiary referral hospital we used Illumina sequencing to determine that all outbreak isolates were sequence type (ST)90 and near-identical at the core genome level. Comparison to publicly available data unequivocally linked all 10 isolates to a 2013 isolate from the same ward, confirming the hospital environment as the most likely original source of infection in the 2015 cases. No clonal relationship was found to IMP-4-producing isolates identified from other local hospitals. However, using Pacific Biosciences long-read sequencing we were able to resolve the complete context of the blaIMP-4 gene, which was found to be on a large IncHI2 plasmid carried by all IMP-4-producing isolates. Continued surveillance of the hospital environment was carried out using Oxford Nanopore long-read sequencing, which was able to rapidly resolve the true relationship of subsequent isolates to the initial outbreak. Shotgun metagenomic sequencing of environmental samples also found evidence of ST90 E. hormaechei and the IncHI2 plasmid within the hospital plumbing.Overall, our strategic application of three WGS technologies provided an in-depth analysis of the outbreak, including the transmission dynamics of a carbapenemase-producing E. hormaechei cluster, identification of possible hospital reservoirs and the full context of blaIMP-4 on a multidrug resistant IncHI2 plasmid that appears to be widely distributed in Australia.


April 21, 2020  |  

Detection of transferable oxazolidinone resistance determinants in Enterococcus faecalis and Enterococcus faecium of swine origin in Sichuan Province, China.

The aim of this study was to detect the transferable oxazolidinone resistance determinants (cfr, optrA and poxtA) in E. faecalis and E. faecium of swine origin in Sichuan Province, China.A total of 158 enterococci strains (93 E. faecalis and 65 E. faecium) isolated from 25 large-scale swine farms were screened for the presence of cfr, optrA and poxtA by PCR. The genetic environments of cfr, optrA and poxtA were characterized by whole genome sequencing. Transfer of oxazolidinone resistance determinants was determined by conjugation or electrotransformation experiments.The transferable oxazolidinone resistance determinants, cfr, optrA and poxtA, were detected in zero, six, and one enterococci strains, respectively. The poxtA in one E. faecalis strain was located on a 37,990 bp plasmid, which co-harbored fexB, cat, tet(L) and tet(M), and could be conjugated to E. faecalis JH2-2. One E. faecalis strain harbored two different OptrA variants, including one variant with a single substitution, Q219H, which has not been reported previously. Two optrA-carrying plasmids, pC25-1, with a size of 45,581 bp, and pC54, with a size of 64,500 bp, shared a 40,494 bp identical region that contained genetic context IS1216E-fexA-optrA-erm(A)-IS1216E, which could be electrotransformed into Staphylococcus aureus. Four different chromosomal optrA gene clusters were found in five strains, in which optrA was associated with Tn554 or Tn558 that were inserted into the radC gene.Our study highlights the fact that mobile genetic elements, such as plasmids, IS1216E, Tn554 and Tn558, may facilitate the horizontal transmission of optrA or poxtA.Copyright © 2019. Published by Elsevier Ltd.


April 21, 2020  |  

Pandemic spread of blaKPC-2 among Klebsiella pneumoniae ST11 in China is associated with horizontal transfer mediated by IncFII-like plasmids.

This study aimed to investigate the spread of the blaKPC-2 gene among Klebsiella pneumoniae and to illustrate the mechanism of dissemination of KPC-producing K. pneumoniae (KPC-Kp) ST11 in China.A total of 354 K. pneumoniae isolates were collected from four hospitals in China and were characterized by Multilocus sequence typing (MLST). Mobile genetic elements (MGEs) and pulsed-field gel electrophoresis (PFGE) analysis were used to identify the subtypes of K. pneumoniae ST11. PCR-based amplification and sequencing were performed to analyze Tn1721 transposons and IncFII-like plasmids. Electroporation experiments and whole-genome sequencing (WGS) analysis were used to reveal the genetic environment of the blaKPC-2 gene.As the primary type(87.1%) of KPC-Kp, K. pneumoniae ST11 was not predominant in nonKPC-Kp(3.1%). ST11 KPC-Kp was clonally heterogeneous and could be further classified into eleven MGE types and fourteen PFGE subtypes. Five Tn1721-blaKPC-2 variants were identified on IncFII-like plasmids. The detection rate of IncFII-like plasmids was much higher in ST11 KPC-Kp (100%) compared with non-ST11 KPC-Kp (16.0%) and the nonKPC-Kp group (7.5%). Moreover, the IncFII plasmid (with IIa replicon) was primarily detected on the MGE-F type (61.7%). The IncFIIk plasmid (with IIk replicon) was clustered into two subtypes: MGE-A (28.3%) and -F (41.5%). The detection of the IncFII and IncFIIk plasmids on MGE-A was 57.1% (20/35) and 42.9% (15/35), respectively.We revealed a close correlation between ST11 KPC-Kp and IncFII-like plasmids. Horizontal transfer mediated by IncFII-like plasmids plays an important role in the pandemic expansion of blaKPC-2 among K. pneumoniae ST11 in China. Copyright © 2019. Published by Elsevier B.V.


April 21, 2020  |  

Defining transgene insertion sites and off-target effects of homology-based gene silencing informs the use of functional genomics tools in Phytophthora infestans.

DNA transformation and homology-based transcriptional silencing are frequently used to assess gene function in Phytophthora. Since unplanned side-effects of these tools are not well-characterized, we used P. infestans to study plasmid integration sites and whether knockdowns caused by homology-dependent silencing spreads to other genes. Insertions occurred both in gene-dense and gene-sparse regions but disproportionately near the 5′ ends of genes, which disrupted native coding sequences. Microhomology at the recombination site between plasmid and chromosome was common. Studies of transformants silenced for twelve different gene targets indicated that neighbors within 500-nt were often co-silenced, regardless of whether hairpin or sense constructs were employed and the direction of transcription of the target. However, cis-spreading of silencing did not occur in all transformants obtained with the same plasmid. Genome-wide studies indicated that unlinked genes with partial complementarity with the silencing-inducing transgene were not usually down-regulated. We learned that hairpin or sense transgenes were not co-silenced with the target in all transformants, which informs how screens for silencing should be performed. We conclude that transformation and gene silencing can be reliable tools for functional genomics in Phytophthora but must be used carefully, especially by testing for the spread of silencing to genes flanking the target.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.