Menu
September 22, 2019  |  

Signatures of host specialization and a recent transposable element burst in the dynamic one-speed genome of the fungal barley powdery mildew pathogen.

Powdery mildews are biotrophic pathogenic fungi infecting a number of economically important plants. The grass powdery mildew, Blumeria graminis, has become a model organism to study host specialization of obligate biotrophic fungal pathogens. We resolved the large-scale genomic architecture of B. graminis forma specialis hordei (Bgh) to explore the potential influence of its genome organization on the co-evolutionary process with its host plant, barley (Hordeum vulgare).The near-chromosome level assemblies of the Bgh reference isolate DH14 and one of the most diversified isolates, RACE1, enabled a comparative analysis of these haploid genomes, which are highly enriched with transposable elements (TEs). We found largely retained genome synteny and gene repertoires, yet detected copy number variation (CNV) of secretion signal peptide-containing protein-coding genes (SPs) and locally disrupted synteny blocks. Genes coding for sequence-related SPs are often locally clustered, but neither the SPs nor the TEs reside preferentially in genomic regions with unique features. Extended comparative analysis with different host-specific B. graminis formae speciales revealed the existence of a core suite of SPs, but also isolate-specific SP sets as well as congruence of SP CNV and phylogenetic relationship. We further detected evidence for a recent, lineage-specific expansion of TEs in the Bgh genome.The characteristics of the Bgh genome (largely retained synteny, CNV of SP genes, recently proliferated TEs and a lack of significant compartmentalization) are consistent with a “one-speed” genome that differs in its architecture and (co-)evolutionary pattern from the “two-speed” genomes reported for several other filamentous phytopathogens.


September 22, 2019  |  

Identification of a leucine-rich repeat receptor-like serine/threonine-protein kinase as a candidate gene for Rvi12 (Vb)-based apple scab resistance

Apple scab caused by Venturia inaequalis is the most important fungal disease of apples (Malus × domestica). Currently, the disease is controlled by up to 15 fungicide applications to the crop per year. Resistant apple cultivars will help promote the sustainable control of scab in commercial orchards. The breakdown of the Rvi6 (Vf) major-gene based resistance, the most used resistance gene in apple breeding, prompted the identification and characterization of new scab resistance genes. By using a large segregating population, the Rvi12 scab resistance gene was previously mapped to a genetic location flanked by molecular markers SNP_23.599 and SNP_24.482. Starting from these markers, utilizing chromosome walking of a Hansen’s baccata #2 (HB2) BAC-library; a single BAC clone spanning the Rvi12 interval was identified. Following Pacific Biosciences (PacBio) RS II sequencing and the use of the hierarchical genome assembly process (HGAP) assembly of the BAC clone sequence, the Rvi12 resistance locus was localized to a 62.3-kb genomic region. Gene prediction and in silico characterization identified a single candidate resistance gene. The gene, named here as Rvi12_Cd5, belongs to the LRR receptor-like serine/threonine-protein kinase family. In silico comparison of the resistance allele from HB2 and the susceptible allele from Golden Delicious (GD) identified the presence of an additional intron in the HB2 allele. Conserved domain analysis identified the presence of four additional LRR motifs in the susceptible allele compared to the resistance allele. The constitutive expression of Rvi12_Cd5 in HB2, together with its structural similarity to known resistance genes, makes it the most likely candidate for Rvi12 scab resistance in apple.


September 22, 2019  |  

Genomic variation among and within six Juglans species.

Genomic analysis in Juglans (walnuts) is expected to transform the breeding and agricultural production of both nuts and lumber. To that end, we report here the determination of reference sequences for six additional relatives of Juglans regia: Juglans sigillata (also from section Dioscaryon), Juglans nigra, Juglans microcarpa, Juglans hindsii (from section Rhysocaryon), Juglans cathayensis (from section Cardiocaryon), and the closely related Pterocarya stenoptera While these are ‘draft’ genomes, ranging in size between 640Mbp and 990Mbp, their contiguities and accuracies can support powerful annotations of genomic variation that are often the foundation of new avenues of research and breeding. We annotated nucleotide divergence and synteny by creating complete pairwise alignments of each reference genome to the remaining six. In addition, we have re-sequenced a sample of accessions from four Juglans species (including regia). The variation discovered in these surveys comprises a critical resource for experimentation and breeding, as well as a solid complementary annotation. To demonstrate the potential of these resources the structural and sequence variation in and around the polyphenol oxidase loci, PPO1 and PPO2 were investigated. As reported for other seed crops variation in this gene is implicated in the domestication of walnuts. The apparently Juglandaceae specific PPO1 duplicate shows accelerated divergence and an excess of amino acid replacement on the lineage leading to accessions of the domesticated nut crop species, Juglans regia and sigillata. Copyright © 2018 Stevens et al.


September 22, 2019  |  

Identification of the DNA methyltransferases establishing the methylome of the cyanobacterium Synechocystis sp. PCC 6803.

DNA methylation in bacteria is important for defense against foreign DNA, but is also involved in DNA repair, replication, chromosome partitioning, and regulatory processes. Thus, characterization of the underlying DNA methyltransferases in genetically tractable bacteria is of paramount importance. Here, we characterized the methylome and orphan methyltransferases in the model cyanobacterium Synechocystis sp. PCC 6803. Single molecule real-time (SMRT) sequencing revealed four DNA methylation recognition sequences in addition to the previously known motif m5CGATCG, which is recognized by M.Ssp6803I. For three of the new recognition sequences, we identified the responsible methyltransferases. M.Ssp6803II, encoded by the sll0729 gene, modifies GGm4CC, M.Ssp6803III, encoded by slr1803, represents the cyanobacterial dam-like methyltransferase modifying Gm6ATC, and M.Ssp6803V, encoded by slr6095 on plasmid pSYSX, transfers methyl groups to the bipartite motif GGm6AN7TTGG/CCAm6AN7TCC. The remaining methylation recognition sequence GAm6AGGC is probably recognized by methyltransferase M.Ssp6803IV encoded by slr6050. M.Ssp6803III and M.Ssp6803IV were essential for the viability of Synechocystis, while the strains lacking M.Ssp6803I and M.Ssp6803V showed growth similar to the wild type. In contrast, growth was strongly diminished of the ?sll0729 mutant lacking M.Ssp6803II. These data provide the basis for systematic studies on the molecular mechanisms impacted by these methyltransferases.


September 22, 2019  |  

Protocol: a versatile, inexpensive, high-throughput plant genomic DNA extraction method suitable for genotyping-by-sequencing.

The recent development of next-generation sequencing DNA marker technologies, such as genotyping-by-sequencing (GBS), generates thousands of informative single nucleotide polymorphism markers in almost any species, regardless of genomic resources. This enables poorly resourced or “orphan” crops/species access to high-density, high-throughput marker platforms which have revolutionised population genetics studies and plant breeding. DNA quality underpins success of GBS methods as the DNA must be amenable to restriction enzyme digestion and sequencing. A barrier to implementing GBS technologies is access to inexpensive, high-throughput extraction methods that yield sequencing-quality genomic DNA (gDNA) from plants. Several high-throughput DNA extraction methods are available, but typically provide low yield or poor quality gDNA, or are costly (US$6-$9/sample) for consumables.We modified a non-organic solvent protocol to extract microgram quantities (1-13 µg) of sequencing-quality high molecular weight gDNA inexpensively in 96-well plates from either fresh, freeze-dried or silica gel-dried plant tissue. The protocol was effective for several easy and difficult-to-extract forage, crop, horticultural and common model species including Trifolium, Medicago, Lolium, Secale, Festuca, Malus, Oryza, and Arabidopsis. The extracted DNA was of high molecular weight and digested readily with restriction enzymes. Contrasting with other extraction protocols we assessed, Illumina-based sequencing of GBS libraries developed from this gDNA had very uniform high quality base-calls to the end of sequence reads. Furthermore, DNA extracted using this method has been sequenced successfully with the PacBio long-read platform. The protocol is scalable, readily automated without requirement for fume hoods, requires approximately three hours to process 192 samples (384-576 samples/day), and is inexpensive at US$0.62/sample for consumables.This versatile, scalable and simple protocol yields high molecular weight genomic DNA suitable for restriction enzyme digestion and next-generation sequencing applications including GBS and long-read sequencing platforms such as PacBio. The low cost, high-throughput, and extraction of high quality gDNA from a range of fresh and dried source plant material makes this method suitable for many sequencing and genotyping applications including large-scale sample screening underpinning breeding programmes.


September 22, 2019  |  

Towards map-based cloning of FB_Mfu10: identification of a receptor-like kinase candidate gene underlying the Malus fusca fire blight resistance locus on linkage group 10.

Breeding for resistance against the destructive fire blight disease of apples is the most sustainable strategy to control the menace of this disease, and has become increasingly important in European apple breeding programs. Since most cultivars are susceptible, wild accessions have been explored for resistance with quantitative trait loci detected in a few wild species. Fire blight resistance of Malus fusca was described following phenotypic evaluations with a C-type strain of Erwinia amylovora, Ea222_JKI, and the detection of a major QTL on chromosome 10 (Mfu10) of this crabapple. The stability of the resistance of M. fusca and Mfu10 has been evaluated using two other strains, the highly aggressive Canadian S-type strain-Ea3049, and the avrRpt2EA mutant-ZYRKD3-1, both of which overcome the resistance of Malus ×robusta 5, a wild species accession with an already described fire blight resistance gene. To pave the way for positional cloning of the underlying fire blight resistance gene of M. fusca, we have fine mapped the QTL region on linkage group 10 using 1888 individuals and 23 newly developed molecular markers, thus delimiting the interval of interest to 0.33 cM between markers FR39G5T7xT7y/FR24N24RP and FRMf7358424/FR46H22. Tightly linked SSR markers are suitable for marker-assisted selection in breeding programs. Furthermore, a bacterial artificial chromosome (BAC) clone spanning FB_Mfu10 region was isolated and sequenced. One putative fire blight resistance candidate gene of M. fusca was predicted on the sequence of BAC 46H22 within the resistance region that encodes B-lectin and serine/threonine kinase domains.


September 22, 2019  |  

The linear mitochondrial genome of the quarantine chytrid Synchytrium endobioticum; insights into the evolution and recent history of an obligate biotrophic plant pathogen.

Chytridiomycota species (chytrids) belong to a basal lineage in the fungal kingdom. Inhabiting terrestrial and aquatic environments, most are free-living saprophytes but several species cause important diseases: e.g. Batrachochytrium dendrobatidis, responsible for worldwide amphibian decline; and Synchytrium endobioticum, causing potato wart disease. S. endobioticum has an obligate biotrophic lifestyle and isolates can be further characterized as pathotypes based on their virulence on a differential set of potato cultivars. Quarantine measures have been implemented globally to control the disease and prevent its spread. We used a comparative approach using chytrid mitogenomes to determine taxonomical relationships and to gain insights into the evolution and recent history of introductions of this plant pathogen.We assembled and annotated the complete mitochondrial genome of 30 S. endobioticum isolates and generated mitochondrial genomes for five additional chytrid species. The mitochondrial genome of S. endobioticum is linear with terminal inverted repeats which was validated by tailing and PCR amplifying the telomeric ends. Surprisingly, no conservation in organisation and orientation of mitochondrial genes was observed among the Chytridiomycota except for S. endobioticum and its sister species Synchytrium microbalum. However, the mitochondrial genome of S. microbalum is circular and comprises only a third of the 72.9 Kbp found for S. endobioticum suggesting recent linearization and expansion. Four mitochondrial lineages were identified in the S. endobioticum mitochondrial genomes. Several pathotypes occur in different lineages, suggesting that these have emerged independently. In addition, variations for polymorphic sites in the mitochondrial genome of individual isolates were observed demonstrating that S. endobioticum isolates represent a community of different genotypes. Such communities were shown to be complex and stable over time, but we also demonstrate that the use of semi-resistant potato cultivars triggers a rapid shift in the mitochondrial haplotype associated with increased virulence.Mitochondrial genomic variation shows that S. endobioticum has been introduced into Europe multiple times, that several pathotypes emerged multiple times, and that isolates represent communities of different genotypes. Our study represents the most comprehensive dataset of chytrid mitogenomes, which provides new insights into the extraordinary dynamics and evolution of mitochondrial genomes involving linearization, expansion and reshuffling.


September 22, 2019  |  

Genomic approaches for studying crop evolution.

Understanding how crop plants evolved from their wild relatives and spread around the world can inform about the origins of agriculture. Here, we review how the rapid development of genomic resources and tools has made it possible to conduct genetic mapping and population genetic studies to unravel the molecular underpinnings of domestication and crop evolution in diverse crop species. We propose three future avenues for the study of crop evolution: establishment of high-quality reference genomes for crops and their wild relatives; genomic characterization of germplasm collections; and the adoption of novel methodologies such as archaeogenetics, epigenomics, and genome editing.


September 22, 2019  |  

Structural variants exhibit allelic heterogeneity and shape variation in complex traits

Despite extensive effort to reveal the genetic basis of complex phenotypic variation, studies typically explain only a fraction of trait heritability. It has been hypothesized that individually rare hidden structural variants (SVs) could account for a significant fraction of variation in complex traits. To investigate this hypothesis, we assembled 14 Drosophila melanogaster genomes and systematically identified more than 20,000 euchromatic SVs, of which ~40% are invisible to high specificity short read genotyping approaches. SVs are common in Drosophila genes, with almost one third of diploid individuals harboring an SV in genes larger than 5kb, and nearly a quarter harboring multiple SVs in genes larger than 10kb. We show that SV alleles are rarer than amino acid polymorphisms, implying that they are more strongly deleterious. A number of functionally important genes harbor previously hidden structural variants that likely affect complex phenotypes (e.g., Cyp6g1, Drsl5, Cyp28d1&2, InR, and Gss1&2). Furthermore, SVs are overrepresented in quantitative trait locus candidate genes from eight Drosophila Synthetic Population Resource (DSPR) mapping experiments. We conclude that SVs are pervasive in genomes, are frequently present as heterogeneous allelic series, and can act as rare alleles of large effect.


September 22, 2019  |  

Bias in resistance gene prediction due to repeat masking

Several recently published Brassicaceae genome annotations show strong differences in resistance (R)-gene content. We believe that this is caused by different approaches to repeat masking. Here we show that some of the repeats stored in public databases used for repeat masking carry pieces of predicted R-gene-related domains, and demonstrate that at least some of the variance in R-gene content in recent genome annotations is caused by using these repeats for repeat masking. We also show that other classes of genes are less affected by this phenomenon, and estimate a false positive rate of R genes (0 to 4.6%) that are in reality transposons carrying the R-gene domains. These results may partially explain why there has been a decrease in published novel R genes in recent years, which has implications for plant breeding, especially in the face of pathogens changing as a response to climate change.


September 22, 2019  |  

Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family.

Yellow rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a devastating fungal disease threatening much of global wheat production. Race-specific resistance (R)-genes are used to control rust diseases, but the rapid emergence of virulent Pst races has prompted the search for a more durable resistance. Here, we report the cloning of Yr15, a broad-spectrum R-gene derived from wild emmer wheat, which encodes a putative kinase-pseudokinase protein, designated as wheat tandem kinase 1, comprising a unique R-gene structure in wheat. The existence of a similar gene architecture in 92 putative proteins across the plant kingdom, including the barley RPG1 and a candidate for Ug8, suggests that they are members of a distinct family of plant proteins, termed here tandem kinase-pseudokinases (TKPs). The presence of kinase-pseudokinase structure in both plant TKPs and the animal Janus kinases sheds light on the molecular evolution of immune responses across these two kingdoms.


September 22, 2019  |  

Recovery of novel association loci in Arabidopsis thaliana and Drosophila melanogaster through leveraging INDELs association and integrated burden test.

Short insertions, deletions (INDELs) and larger structural variants have been increasingly employed in genetic association studies, but few improvements over SNP-based association have been reported. In order to understand why this might be the case, we analysed two publicly available datasets and observed that 63% of INDELs called in A. thaliana and 64% in D. melanogaster populations are misrepresented as multiple alleles with different functional annotations, i.e. where the same underlying variant is represented by inconsistent alignments leading to different variant calls. To address this issue, we have developed the software Irisas to reclassify and re-annotate these variants, which we then used for single-locus tests of association. We also integrated them to predict the functional impact of SNPs, INDELs, and structural variants for burden testing. Using both approaches, we re-analysed the genetic architecture of complex traits in A. thaliana and D. melanogaster. Heritability analysis using SNPs alone explained on average 27% and 19% of phenotypic variance for A. thaliana and D. melanogaster respectively. Our method explained an additional 11% and 3%, respectively. We also identified novel trait loci that previous SNP-based association studies failed to map, and which contain established candidate genes. Our study shows the value of the association test with INDELs and integrating multiple types of variants in association studies in plants and animals.


September 22, 2019  |  

Eco-friendly Management of Karnal Bunt (Neovossia indica) of Wheat

Karnal bunt incited by Neovossia indica is one of the most important disease of wheat crop. To develop an eco-friendly management practice against Karnal bunt of wheat, integration of fungicidal seed treatment with foliar sprays of phytoextracts, bio-control agent and fungicide revealed. Uses of Thiram 75DS or Kavach 75WP @2g/Kg, Dithane M-45 or Captan [email protected]/Kg, Vitavax [email protected]/Kg, Tilt 25EC or Raxil 2DS@1mL/Kg or Pseudomonas fluorescens@5 mL/Kg or Trichoderma viride (Ecoderma) or T. harzianum@5 mL/Kg seed treatment for eliminating primary inoculum (teliospores). Seed soaking in Lantana (L. camara) or Eucalyptus (E. globulus) or Akh (Calotropis procera) or Kali basuti (Eupatorium adenophorum) @ 250 mL/L for 60 min and dry in shad are effective in eradicating the seed infection also. Application foliar spray of Baycor 25WP or Bavistin 50WP or F-100 or Moximate [email protected]/Kg, Tilt 25EC or Folicur 25EC or Contaf 25EC@1mL/Kg at boot leaf stage and 50% emergence flowering heads against the secondary air-borne inoculum (Allantoides sporidia). This is concerning integration of fungicide seed treatment with foliar spray of bio- control agent and phyto-extract. It is cheaper and eco-friendly practice for the control of Karnal bunt of wheat.


September 21, 2019  |  

Potato late blight field resistance from QTL dPI09c is conferred by the NB-LRR gene R8.

Following the often short-lived protection that major nucleotide binding, leucine-rich-repeat (NB-LRR) resistance genes offer against the potato pathogen Phytophthora infestans, field resistance was thought to provide a more durable alternative to prevent late blight disease. We previously identified the QTL dPI09c on potato chromosome 9 as a more durable field resistance source against late blight. Here, the resistance QTL was fine-mapped to a 186 kb region. The interval corresponds to a larger, 389 kb, genomic region in the potato reference genome of Solanum tuberosum Group Phureja doubled monoploid clone DM1-3 (DM) and from which functional NB-LRRs R8, R9a, Rpi-moc1, and Rpi_vnt1 have arisen independently in wild species. dRenSeq analysis of parental clones alongside resistant and susceptible bulks of the segregating population B3C1HP showed full sequence representation of R8. This was independently validated using long-range PCR and screening of a bespoke bacterial artificial chromosome library. The latter enabled a comparative analysis of the sequence variation in this locus in diverse Solanaceae. We reveal for the first time that broad spectrum and durable field resistance against P. infestans is conferred by the NB-LRR gene R8, which is thought to provide narrow spectrum race-specific resistance.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.