Menu
April 21, 2020  |  

Insect genomes: progress and challenges.

In the wake of constant improvements in sequencing technologies, numerous insect genomes have been sequenced. Currently, 1219 insect genome-sequencing projects have been registered with the National Center for Biotechnology Information, including 401 that have genome assemblies and 155 with an official gene set of annotated protein-coding genes. Comparative genomics analysis showed that the expansion or contraction of gene families was associated with well-studied physiological traits such as immune system, metabolic detoxification, parasitism and polyphagy in insects. Here, we summarize the progress of insect genome sequencing, with an emphasis on how this impacts research on pest control. We begin with a brief introduction to the basic concepts of genome assembly, annotation and metrics for evaluating the quality of draft assemblies. We then provide an overview of genome information for numerous insect species, highlighting examples from prominent model organisms, agricultural pests and disease vectors. We also introduce the major insect genome databases. The increasing availability of insect genomic resources is beneficial for developing alternative pest control methods. However, many opportunities remain for developing data-mining tools that make maximal use of the available insect genome resources. Although rapid progress has been achieved, many challenges remain in the field of insect genomics. © 2019 The Royal Entomological Society.


April 21, 2020  |  

Complete genome sequence of Bacillus velezensis JT3-1, a microbial germicide isolated from yak feces

Bacillus velezensis JT3-1 is a probiotic strain isolated from feces of the domestic yak (Bos grunniens) in the Gansu province of China. It has strong antagonistic activity against Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, Salmonella Typhimurium, Mannheimia haemolytica, Staphylococcus hominis, Clostridium perfringens, and Mycoplasma bovis. These properties have made the JT3-1 strain the focus of commercial interest. In this study, we describe the complete genome sequence of JT3-1, with a genome size of 3,929,799 bp, 3761 encoded genes and an average GC content of 46.50%. Whole genome sequencing of Bacillus velezensis JT3-1 will lay a good foundation for elucidation of the mechanisms of its antimicrobial activity, and for its future application.


April 21, 2020  |  

Whole Genome Sequencing and Analysis of Chlorimuron-Ethyl Degrading Bacteria Klebsiella pneumoniae 2N3.

Klebsiella pneumoniae 2N3 is a strain of gram-negative bacteria that can degrade chlorimuron-ethyl and grow with chlorimuron-ethyl as the sole nitrogen source. The complete genome of Klebsiella pneumoniae 2N3 was sequenced using third generation high-throughput DNA sequencing technology. The genomic size of strain 2N3 was 5.32 Mb with a GC content of 57.33% and a total of 5156 coding genes and 112 non-coding RNAs predicted. Two hydrolases expressed by open reading frames (ORFs) 0934 and 0492 were predicted and experimentally confirmed by gene knockout to be involved in the degradation of chlorimuron-ethyl. Strains of ?ORF 0934, ?ORF 0492, and wild type (WT) reached their highest growth rates after 8-10 hours in incubation. The degradation rates of chlorimuron-ethyl by both ?ORF 0934 and ?ORF 0492 decreased in comparison to the WT during the first 8 hours in culture by 25.60% and 24.74%, respectively, while strains ?ORF 0934, ?ORF 0492, and the WT reached the highest degradation rates of chlorimuron-ethyl in 36 hours of 74.56%, 90.53%, and 95.06%, respectively. This study provides scientific evidence to support the application of Klebsiella pneumoniae 2N3 in bioremediation to control environmental pollution.


April 21, 2020  |  

Survey of the Bradysia odoriphaga Transcriptome Using PacBio Single-Molecule Long-Read Sequencing.

The damage caused by Bradysia odoriphaga is the main factor threatening the production of vegetables in the Liliaceae family. However, few genetic studies of B. odoriphaga have been conducted because of a lack of genomic resources. Many long-read sequencing technologies have been developed in the last decade; therefore, in this study, the transcriptome including all development stages of B. odoriphaga was sequenced for the first time by Pacific single-molecule long-read sequencing. Here, 39,129 isoforms were generated, and 35,645 were found to have annotation results when checked against sequences available in different databases. Overall, 18,473 isoforms were distributed in 25 various Clusters of Orthologous Groups, and 11,880 isoforms were categorized into 60 functional groups that belonged to the three main Gene Ontology classifications. Moreover, 30,610 isoforms were assigned into 44 functional categories belonging to six main Kyoto Encyclopedia of Genes and Genomes functional categories. Coding DNA sequence (CDS) prediction showed that 36,419 out of 39,129 isoforms were predicted to have CDS, and 4319 simple sequence repeats were detected in total. Finally, 266 insecticide resistance and metabolism-related isoforms were identified as candidate genes for further investigation of insecticide resistance and metabolism in B. odoriphaga.


April 21, 2020  |  

Genome sequence of the corn leaf aphid (Rhopalosiphum maidis Fitch).

The corn leaf aphid (Rhopalosiphum maidis Fitch) is the most economically damaging aphid pest on maize (Zea mays), one of the world’s most important grain crops. In addition to causing direct damage by removing photoassimilates, R. maidis transmits several destructive maize viruses, including maize yellow dwarf virus, barley yellow dwarf virus, sugarcane mosaic virus, and cucumber mosaic virus.The genome of a parthenogenetically reproducing R. maidis clone was assembled with a combination of Pacific Biosciences (207-fold coverage) and Illumina (83-fold coverage) sequencing. The 689 assembled contigs, which have an N50 size of 9.0 megabases (Mb) and a low level of heterozygosity, were clustered using Phase Genomics Hi-C interaction maps. Consistent with the commonly observed 2n = 8 karyotype of R. maidis, most of the contigs (473 spanning 321 Mb) were successfully oriented into 4 scaffolds. The genome assembly captured the full length of 95.8% of the core eukaryotic genes, indicating that it is highly complete. Repetitive sequences accounted for 21.2% of the assembly, and a total of 17,629 protein-coding genes were predicted with integrated evidence from ab initio and homology-based gene predictions and transcriptome sequences generated with both Pacific Biosciences and Illumina. An analysis of likely horizontally transferred genes identified 2 from bacteria, 7 from fungi, 2 from protozoa, and 9 from algae. Repeat elements, transposons, and genes encoding likely detoxification enzymes (cytochrome P450s, glutathione S-transferases, carboxylesterases, uridine diphosphate-glucosyltransferases, and ABC transporters) were identified in the genome sequence. Other than Buchnera aphidicola (642,929 base pairs, 602 genes), no endosymbiont bacteria were found in R. maidis.A high-quality R. maidis genome was assembled at the chromosome level. This genome sequence will enable further research related to ecological interactions, virus transmission, pesticide resistance, and other aspects of R. maidis biology. It also serves as a valuable resource for comparative investigation of other aphid species. © The Author(s) 2019. Published by Oxford University Press.


April 21, 2020  |  

Genome Analysis of Carbaryl-Degrading Strain Pseudomonas putida XWY-1.

Carbaryl was a widely used pesticide in the agriculture industry. The toxicity against non-target organisms and the environmental pollution it caused became the focus of public concern. However, the microbial mechanism of carbaryl degradation was not fully investigated. In the study, we reported the complete genome of the carbaryl-degrading Pseudomonas putida strain XWY-1, which consists of a chromosome (5.9 Mbp) and a plasmid (0.4 Mbp). The carbaryl degradation genes are located on the plasmid. The study on the genome will facilitate to further elucidate the carbaryl degradation and advance the potential biotechnological applications of P. putida strain XWY-1.


April 21, 2020  |  

The role of long-term mineral and organic fertilisation treatment in changing pathogen and symbiont community composition in soil

Application of organic fertilisers to soil prevents erosion, improves fertility and may suppress certain soil-borne plant pathogens, but it is still unclear how different trophic groups of fungi and oomycetes respond to long-term fertilisation treatment. The objective of the study was to examine the effect of different fertilisation regimes on fungal and oomycete pathogen- and mycorrhizal symbiont diversity and community structure in both soil and roots, using PacBio SMRT sequencing. The field experiment included three fertilisation treatments that have been applied since 1989: nitrogen fertilisation (WOM), nitrogen fertilisation with manure amendment (FYM) and alternative organic fertilisation (AOF), each applied at five different rates. Soil samples were collected three times during the growing season, while root samples were collected during the flowering stage. There was no influence of the studied variables on soil and root pathogen richness. Contrary to our hypothesis, pathogen relative abundance in both soil and roots was significantly higher in plots with the AOF treatment. Furthermore, richness and relative abundance of arbuscular mycorrhizal (AM) fungi decreased significantly in the AOF treatment. Permutational analysis of variance (PERMANOVA) demonstrated the effect of fertilisation treatment on pathogen community composition in both soil and roots. Our findings indicate that organic fertilisers may not always benefit soil microbial community composition. Therefore, further studies are needed to understand how fertilisation affects mycorrhizal mutualists and pathogens.


April 21, 2020  |  

Human Migration and the Spread of the Nematode Parasite Wuchereria bancrofti.

The human disease lymphatic filariasis causes the debilitating effects of elephantiasis and hydrocele. Lymphatic filariasis currently affects the lives of 90 million people in 52 countries. There are three nematodes that cause lymphatic filariasis, Brugia malayi, Brugia timori, and Wuchereria bancrofti, but 90% of all cases of lymphatic filariasis are caused solely by W. bancrofti (Wb). Here we use population genomics to reconstruct the probable route and timing of migration of Wb strains that currently infect Africa, Haiti, and Papua New Guinea (PNG). We used selective whole genome amplification to sequence 42 whole genomes of single Wb worms from populations in Haiti, Mali, Kenya, and PNG. Our results are consistent with a hypothesis of an Island Southeast Asia or East Asian origin of Wb. Our demographic models support divergence times that correlate with the migration of human populations. We hypothesize that PNG was infected at two separate times, first by the Melanesians and later by the migrating Austronesians. The migrating Austronesians also likely introduced Wb to Madagascar where later migrations spread it to continental Africa. From Africa, Wb spread to the New World during the transatlantic slave trade. Genome scans identified 17 genes that were highly differentiated among Wb populations. Among these are genes associated with human immune suppression, insecticide sensitivity, and proposed drug targets. Identifying the distribution of genetic diversity in Wb populations and selection forces acting on the genome will build a foundation to test future hypotheses and help predict response to current eradication efforts. © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


April 21, 2020  |  

Structural and functional characterization of an intradiol ring-cleavage dioxygenase from the polyphagous spider mite herbivore Tetranychus urticae Koch.

Genome analyses of the polyphagous spider mite herbivore Tetranychus urticae (two-spotted spider mite) revealed the presence of a set of 17 genes that code for secreted proteins belonging to the “intradiol dioxygenase-like” subgroup. Phylogenetic analyses indicate that this novel enzyme family has been acquired by horizontal gene transfer. In order to better understand the role of these proteins in T. urticae, we have structurally and functionally characterized one paralog (tetur07g02040). It was demonstrated that this protein is indeed an intradiol ring-cleavage dioxygenase, as the enzyme is able to cleave catechol between two hydroxyl-groups using atmospheric dioxygen. The enzyme was characterized functionally and structurally. The active site of the T. urticae enzyme contains an Fe3+ cofactor that is coordinated by two histidine and two tyrosine residues, an arrangement that is similar to those observed in bacterial homologs. However, the active site is significantly more solvent exposed than in bacterial proteins. Moreover, the mite enzyme is monomeric, while almost all structurally characterized bacterial homologs form oligomeric assemblies. Tetur07g02040 is not only the first spider mite dioxygenase that has been characterized at the molecular level, but is also the first structurally characterized intradiol ring-cleavage dioxygenase originating from a eukaryote.Copyright © 2018 Elsevier Ltd. All rights reserved.


April 21, 2020  |  

Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots.

Root-associated microbes play a key role in plant performance and productivity, making them important players in agroecosystems. So far, very few studies have assessed the impact of different farming systems on the root microbiota and it is still unclear whether agricultural intensification influences the structure and complexity of microbial communities. We investigated the impact of conventional, no-till, and organic farming on wheat root fungal communities using PacBio SMRT sequencing on samples collected from 60 farmlands in Switzerland. Organic farming harbored a much more complex fungal network with significantly higher connectivity than conventional and no-till farming systems. The abundance of keystone taxa was the highest under organic farming where agricultural intensification was the lowest. We also found a strong negative association (R2?=?0.366; P?


April 21, 2020  |  

Closing the Yield Gap for Cannabis: A Meta-Analysis of Factors Determining Cannabis Yield.

Until recently, the commercial production of Cannabis sativa was restricted to varieties that yielded high-quality fiber while producing low levels of the psychoactive cannabinoid tetrahydrocannabinol (THC). In the last few years, a number of jurisdictions have legalized the production of medical and/or recreational cannabis with higher levels of THC, and other jurisdictions seem poised to follow suit. Consequently, demand for industrial-scale production of high yield cannabis with consistent cannabinoid profiles is expected to increase. In this paper we highlight that currently, projected annual production of cannabis is based largely on facility size, not yield per square meter. This meta-analysis of cannabis yields reported in scientific literature aimed to identify the main factors contributing to cannabis yield per plant, per square meter, and per W of lighting electricity. In line with previous research we found that variety, plant density, light intensity and fertilization influence cannabis yield and cannabinoid content; we also identified pot size, light type and duration of the flowering period as predictors of yield and THC accumulation. We provide insight into the critical role of light intensity, quality, and photoperiod in determining cannabis yields, with particular focus on the potential for light-emitting diodes (LEDs) to improve growth and reduce energy requirements. We propose that the vast amount of genomics data currently available for cannabis can be used to better understand the effect of genotype on yield. Finally, we describe diversification that is likely to emerge in cannabis growing systems and examine the potential role of plant-growth promoting rhizobacteria (PGPR) for growth promotion, regulation of cannabinoid biosynthesis, and biocontrol.


April 21, 2020  |  

Divergent evolutionary trajectories following speciation in two ectoparasitic honey bee mites.

Multispecies host-parasite evolution is common, but how parasites evolve after speciating remains poorly understood. Shared evolutionary history and physiology may propel species along similar evolutionary trajectories whereas pursuing different strategies can reduce competition. We test these scenarios in the economically important association between honey bees and ectoparasitic mites by sequencing the genomes of the sister mite species Varroa destructor and Varroa jacobsoni. These genomes were closely related, with 99.7% sequence identity. Among the 9,628 orthologous genes, 4.8% showed signs of positive selection in at least one species. Divergent selective trajectories were discovered in conserved chemosensory gene families (IGR, SNMP), and Halloween genes (CYP) involved in moulting and reproduction. However, there was little overlap in these gene sets and associated GO terms, indicating different selective regimes operating on each of the parasites. Based on our findings, we suggest that species-specific strategies may be needed to combat evolving parasite communities. © The Author(s) 2019.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.