X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, December 1, 2020

User Group Meeting: Development, validation, and applications of a high-fidelity, species-specific, eubacterial pan-domain microbiome assay on the PacBio System

In this PacBio User Group Meeting presentation, Garth Ehrlich of Drexel University College of Medicine shares his work on developing a microbiome assay that uses SMRT Sequencing to provide high-quality coverage of the 16S bacterial rRNA for species identification. The microbiome analysis pipeline, MCSMRT, takes advantage of PacBio circular consensus sequencing (CCS) technology and second-generation pathway analysis system for generating extremely high-fidelity sequences that provide the user with ultra-high-confidence species-level microbiome data.

Read More »

Tuesday, April 21, 2020

Complete genome sequence of Paenisporosarcina antarctica CGMCC 1.6503 T, a marine psychrophilic bacterium isolated from Antarctica

A marine psychrophilic bacterium _Paenisporosarcina antarctica_ CGMCC 1.6503T (= JCM 14646T) was isolated off King George Island, Antarctica (62°13’31? S 58°57’08? W). In this study, we report the complete genome sequence of _Paenisporosarcina antarctica_, which is comprised of 3,972,524?bp with a mean G?+?C content of 37.0%. By gene function and metabolic pathway analyses, studies showed that strain CGMCC 1.6503T encodes a series of genes related to cold adaptation, including encoding fatty acid desaturases, dioxygenases, antifreeze proteins and cold shock proteins, and possesses several two-component regulatory systems, which could assist this strain in responding to the cold stress, the oxygen stress…

Read More »

Tuesday, April 21, 2020

Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits.

The ruminants are one of the most successful mammalian lineages, exhibiting morphological and habitat diversity and containing several key livestock species. To better understand their evolution, we generated and analyzed de novo assembled genomes of 44 ruminant species, representing all six Ruminantia families. We used these genomes to create a time-calibrated phylogeny to resolve topological controversies, overcoming the challenges of incomplete lineage sorting. Population dynamic analyses show that population declines commenced between 100,000 and 50,000 years ago, which is concomitant with expansion in human populations. We also reveal genes and regulatory elements that possibly contribute to the evolution of the…

Read More »

Tuesday, April 21, 2020

Clostridium scindens ATCC 35704: Integration of Nutritional Requirements, the Complete Genome Sequence, and Global Transcriptional Responses to Bile Acids.

In the human gut, Clostridium scindens ATCC 35704 is a predominant bacterium and one of the major bile acid 7a-dehydroxylating anaerobes. While this organism is well-studied relative to bile acid metabolism, little is known about the basic nutrition and physiology of C. scindens ATCC 35704. To determine the amino acid and vitamin requirements of C. scindens, the leave-one-out (one amino acid group or vitamin) technique was used to eliminate the nonessential amino acids and vitamins. With this approach, the amino acid tryptophan and three vitamins (riboflavin, pantothenate, and pyridoxal) were found to be required for the growth of C. scindens…

Read More »

Tuesday, April 21, 2020

Pseudomolecule-level assembly of the Chinese oil tree yellowhorn (Xanthoceras sorbifolium) genome.

Yellowhorn (Xanthoceras sorbifolium) is a species of the Sapindaceae family native to China and is an oil tree that can withstand cold and drought conditions. A pseudomolecule-level genome assembly for this species will not only contribute to understanding the evolution of its genes and chromosomes but also bring yellowhorn breeding into the genomic era.Here, we generated 15 pseudomolecules of yellowhorn chromosomes, on which 97.04% of scaffolds were anchored, using the combined Illumina HiSeq, Pacific Biosciences Sequel, and Hi-C technologies. The length of the final yellowhorn genome assembly was 504.2 Mb with a contig N50 size of 1.04 Mb and a…

Read More »

Tuesday, April 21, 2020

Genomic and transcriptomic insights into the survival of the subaerial cyanobacterium Nostoc flagelliforme in arid and exposed habitats.

The cyanobacterium Nostoc flagelliforme is an extremophile that thrives under extraordinary desiccation and ultraviolet (UV) radiation conditions. To investigate its survival strategies, we performed whole-genome sequencing of N. flagelliforme CCNUN1 and transcriptional profiling of its field populations upon rehydration in BG11 medium. The genome of N. flagelliforme is 10.23 Mb in size and contains 10 825 predicted protein-encoding genes, making it one of the largest complete genomes of cyanobacteria reported to date. Comparative genomics analysis among 20 cyanobacterial strains revealed that genes related to DNA replication, recombination and repair had disproportionately high contributions to the genome expansion. The ability of…

Read More »

Tuesday, April 21, 2020

Conventional culture methods with commercially available media unveil the presence of novel culturable bacteria.

Recent metagenomic analysis has revealed that our gut microbiota plays an important role in not only the maintenance of our health but also various diseases such as obesity, diabetes, inflammatory bowel disease, and allergy. However, most intestinal bacteria are considered ‘unculturable’ bacteria, and their functions remain unknown. Although culture-independent genomic approaches have enabled us to gain insight into their potential roles, culture-based approaches are still required to understand their characteristic features and phenotypes. To date, various culturing methods have been attempted to obtain these ‘unculturable’ bacteria, but most such methods require advanced techniques. Here, we have tried to isolate possible…

Read More »

Tuesday, April 21, 2020

Complete genome sequence of marine Bacillus sp. Y-01, isolated from the plastics contamination in the Yellow Sea

Plastics contamination in the environment has been an increasing ecological problem. Here we present the complete genome sequence of Bacillus sp. Y-01, isolated from plastic contamination samples in the Yellow Sea, which can utilize the polypropylene as the sole carbon and energy source. The strain has one circular chromosome of 5,130,901?bp in 8 contigs with a 38.24% GC content, consisting of 4996 protein-coding genes, 118 tRNA genes, as well as 40 rRNA operons as 5S-16S-23S rRNA. The complete genome sequence of Bacillus sp. Y-01 will provide useful genetic information to further detect the molecular mechanisms behind marine microplastics degradation.

Read More »

Tuesday, April 21, 2020

Complete Genome Sequence of the Wolbachia wAlbB Endosymbiont of Aedes albopictus.

Wolbachia, an alpha-proteobacterium closely related to Rickettsia, is a maternally transmitted, intracellular symbiont of arthropods and nematodes. Aedes albopictus mosquitoes are naturally infected with Wolbachia strains wAlbA and wAlbB. Cell line Aa23 established from Ae. albopictus embryos retains only wAlbB and is a key model to study host-endosymbiont interactions. We have assembled the complete circular genome of wAlbB from the Aa23 cell line using long-read PacBio sequencing at 500× median coverage. The assembled circular chromosome is 1.48 megabases in size, an increase of more than 300 kb over the published draft wAlbB genome. The annotation of the genome identified 1,205…

Read More »

Tuesday, April 21, 2020

Precise therapeutic gene correction by a simple nuclease-induced double-stranded break.

Current programmable nuclease-based methods (for example, CRISPR-Cas9) for the precise correction of a disease-causing genetic mutation harness the homology-directed repair pathway. However, this repair process requires the co-delivery of an exogenous DNA donor to recode the sequence and can be inefficient in many cell types. Here we show that disease-causing frameshift mutations that result from microduplications can be efficiently reverted to the wild-type sequence simply by generating a DNA double-stranded break near the centre of the duplication. We demonstrate this in patient-derived cell lines for two diseases: limb-girdle muscular dystrophy type 2G (LGMD2G)1 and Hermansky-Pudlak syndrome type 1 (HPS1)2. Clonal…

Read More »

Tuesday, April 21, 2020

A full-length transcriptome of Sepia esculenta using a combination of single-molecule long-read (SMRT) and Illumina sequencing

As an economically important cephalopods species, wild-caught Sepia esculenta fishery has suffered a server decline due to over-fishing and ocean environmental damage. To restore this seriously declining fishery resource, we should understand the genetic foundation and molecular mechanism of spawning, reproduction and mortal of golden cuttlefish. In this study, we generated the full-length transcriptome of S. esculenta based on the total RNA of tissue samples (brain, optic gland, nidamental gland, ovary and muscle at different developmental stages) using a combination of single-molecule real-time (SMRT) and Illumina RNA-seq technology. A total of 14.16 Gb SMRT sequencing data were assembled into 94,635…

Read More »

Tuesday, April 21, 2020

Origin and evolution of the octoploid strawberry genome.

Cultivated strawberry emerged from the hybridization of two wild octoploid species, both descendants from the merger of four diploid progenitor species into a single nucleus more than 1 million years ago. Here we report a near-complete chromosome-scale assembly for cultivated octoploid strawberry (Fragaria?×?ananassa) and uncovered the origin and evolutionary processes that shaped this complex allopolyploid. We identified the extant relatives of each diploid progenitor species and provide support for the North American origin of octoploid strawberry. We examined the dynamics among the four subgenomes in octoploid strawberry and uncovered the presence of a single dominant subgenome with significantly greater gene…

Read More »

Tuesday, April 21, 2020

Genome assembly and gene expression in the American black bear provides new insights into the renal response to hibernation.

The prevalence of chronic kidney disease (CKD) is rising worldwide and 10-15% of the global population currently suffers from CKD and its complications. Given the increasing prevalence of CKD there is an urgent need to find novel treatment options. The American black bear (Ursus americanus) copes with months of lowered kidney function and metabolism during hibernation without the devastating effects on metabolism and other consequences observed in humans. In a biomimetic approach to better understand kidney adaptations and physiology in hibernating black bears, we established a high-quality genome assembly. Subsequent RNA-Seq analysis of kidneys comparing gene expression profiles in black…

Read More »

Tuesday, April 21, 2020

Hybrid sequencing-based personal full-length transcriptomic analysis implicates proteostatic stress in metastatic ovarian cancer.

Comprehensive molecular characterization of myriad somatic alterations and aberrant gene expressions at personal level is key to precision cancer therapy, yet limited by current short-read sequencing technology, individualized catalog of complete genomic and transcriptomic features is thus far elusive. Here, we integrated second- and third-generation sequencing platforms to generate a multidimensional dataset on a patient affected by metastatic epithelial ovarian cancer. Whole-genome and hybrid transcriptome dissection captured global genetic and transcriptional variants at previously unparalleled resolution. Particularly, single-molecule mRNA sequencing identified a vast array of unannotated transcripts, novel long noncoding RNAs and gene chimeras, permitting accurate determination of transcription start,…

Read More »

Tuesday, April 21, 2020

High Quality Draft Genome of Arogyapacha (Trichopus zeylanicus), an Important Medicinal Plant Endemic to Western Ghats of India.

Arogyapacha, the local name of Trichopus zeylanicus, is a rare, indigenous medicinal plant of India. This plant is famous for its traditional use as an instant energy stimulant. So far, no genomic resource is available for this important plant and hence its metabolic pathways are poorly understood. Here, we report on a high-quality draft assembly of approximately 713.4 Mb genome of T. zeylanicus, first draft genome from the genus Trichopus The assembly was generated in a hybrid approach using Illumina short-reads and Pacbio longer-reads. The total assembly comprised of 22601 scaffolds with an N50 value of 433.3 Kb. We predicted…

Read More »

1 2

Subscribe for blog updates:

Archives