April 21, 2020  |  

Relative Performance of MinION (Oxford Nanopore Technologies) versus Sequel (Pacific Biosciences) Third-Generation Sequencing Instruments in Identification of Agricultural and Forest Fungal Pathogens.

Culture-based molecular identification methods have revolutionized detection of pathogens, yet these methods are slow and may yield inconclusive results from environmental materials. The second-generation sequencing tools have much-improved precision and sensitivity of detection, but these analyses are costly and may take several days to months. Of the third-generation sequencing techniques, the portable MinION device (Oxford Nanopore Technologies) has received much attention because of its small size and possibility of rapid analysis at reasonable cost. Here, we compare the relative performances of two third-generation sequencing instruments, MinION and Sequel (Pacific Biosciences), in identification and diagnostics of fungal and oomycete pathogens from conifer (Pinaceae) needles and potato (Solanum tuberosum) leaves and tubers. We demonstrate that the Sequel instrument is efficient for metabarcoding of complex samples, whereas MinION is not suited for this purpose due to a high error rate and multiple biases. However, we find that MinION can be utilized for rapid and accurate identification of dominant pathogenic organisms and other associated organisms from plant tissues following both amplicon-based and PCR-free metagenomics approaches. Using the metagenomics approach with shortened DNA extraction and incubation times, we performed the entire MinION workflow, from sample preparation through DNA extraction, sequencing, bioinformatics, and interpretation, in 2.5 h. We advocate the use of MinION for rapid diagnostics of pathogens and potentially other organisms, but care needs to be taken to control or account for multiple potential technical biases.IMPORTANCE Microbial pathogens cause enormous losses to agriculture and forestry, but current combined culturing- and molecular identification-based detection methods are too slow for rapid identification and application of countermeasures. Here, we develop new and rapid protocols for Oxford Nanopore MinION-based third-generation diagnostics of plant pathogens that greatly improve the speed of diagnostics. However, due to high error rate and technical biases in MinION, the Pacific BioSciences Sequel platform is more useful for in-depth amplicon-based biodiversity monitoring (metabarcoding) from complex environmental samples.Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

Cellular Dynamics and Genomic Identity of Centromeres in Cereal Blast Fungus.

Precise kinetochore-microtubule interactions ensure faithful chromosome segregation in eukaryotes. Centromeres, identified as scaffolding sites for kinetochore assembly, are among the most rapidly evolving chromosomal loci in terms of the DNA sequence and length and organization of intrinsic elements. Neither the centromere structure nor the kinetochore dynamics is well studied in plant-pathogenic fungi. Here, we sought to understand the process of chromosome segregation in the rice blast fungus Magnaporthe oryzae High-resolution imaging of green fluorescent protein (GFP)-tagged inner kinetochore proteins CenpA and CenpC revealed unusual albeit transient declustering of centromeres just before anaphase separation of chromosomes in M. oryzae Strikingly, the declustered centromeres positioned randomly at the spindle midzone without an apparent metaphase plate per se Using CenpA chromatin immunoprecipitation followed by deep sequencing, all seven centromeres in M. oryzae were found to be regional, spanning 57-kb to 109-kb transcriptionally poor regions. Highly AT-rich and heavily methylated DNA sequences were the only common defining features of all the centromeres in rice blast. Lack of centromere-specific DNA sequence motifs or repetitive elements suggests an epigenetic specification of centromere function in M. oryzae PacBio genome assemblies and synteny analyses facilitated comparison of the centromeric/pericentromeric regions in distinct isolates of rice blast and wheat blast and in Magnaporthiopsis poae Overall, this study revealed unusual centromere dynamics and precisely identified the centromere loci in the top model fungal pathogens that belong to Magnaporthales and cause severe losses in the global production of food crops and turf grasses.IMPORTANCEMagnaporthe oryzae is an important fungal pathogen that causes a loss of 10% to 30% of the annual rice crop due to the devastating blast disease. In most organisms, kinetochores are clustered together or arranged at the metaphase plate to facilitate synchronized anaphase separation of sister chromatids in mitosis. In this study, we showed that the initially clustered kinetochores separate and position randomly prior to anaphase in M. oryzae Centromeres in M. oryzae occupy large genomic regions and form on AT-rich DNA without any common sequence motifs. Overall, this study identified atypical kinetochore dynamics and mapped functional centromeres in M. oryzae to define the roles of centromeric and pericentric boundaries in kinetochore assembly on epigenetically specified centromere loci. This study should pave the way for further understanding of the contribution of heterochromatin in genome stability and virulence of the blast fungus and its related species of high economic importance.Copyright © 2019 Yadav et al.


April 21, 2020  |  

The Modern View of B Chromosomes Under the Impact of High Scale Omics Analyses.

Supernumerary B chromosomes (Bs) are extra karyotype units in addition to A chromosomes, and are found in some fungi and thousands of animals and plant species. Bs are uniquely characterized due to their non-Mendelian inheritance, and represent one of the best examples of genomic conflict. Over the last decades, their genetic composition, function and evolution have remained an unresolved query, although a few successful attempts have been made to address these phenomena. A classical concept based on cytogenetics and genetics is that Bs are selfish and abundant with DNA repeats and transposons, and in most cases, they do not carry any function. However, recently, the modern quantum development of high scale multi-omics techniques has shifted B research towards a new-born field that we call “B-omics”. We review the recent literature and add novel perspectives to the B research, discussing the role of new technologies to understand the mechanistic perspectives of the molecular evolution and function of Bs. The modern view states that B chromosomes are enriched with genes for many significant biological functions, including but not limited to the interesting set of genes related to cell cycle and chromosome structure. Furthermore, the presence of B chromosomes could favor genomic rearrangements and influence the nuclear environment affecting the function of other chromatin regions. We hypothesize that B chromosomes might play a key function in driving their transmission and maintenance inside the cell, as well as offer an extra genomic compartment for evolution.


April 21, 2020  |  

Effector gene reshuffling involves dispensable mini-chromosomes in the wheat blast fungus.

Newly emerged wheat blast disease is a serious threat to global wheat production. Wheat blast is caused by a distinct, exceptionally diverse lineage of the fungus causing rice blast disease. Through sequencing a recent field isolate, we report a reference genome that includes seven core chromosomes and mini-chromosome sequences that harbor effector genes normally found on ends of core chromosomes in other strains. No mini-chromosomes were observed in an early field strain, and at least two from another isolate each contain different effector genes and core chromosome end sequences. The mini-chromosome is enriched in transposons occurring most frequently at core chromosome ends. Additionally, transposons in mini-chromosomes lack the characteristic signature for inactivation by repeat-induced point (RIP) mutation genome defenses. Our results, collectively, indicate that dispensable mini-chromosomes and core chromosomes undergo divergent evolutionary trajectories, and mini-chromosomes and core chromosome ends are coupled as a mobile, fast-evolving effector compartment in the wheat pathogen genome.


April 21, 2020  |  

A whole genome scan of SNP data suggests a lack of abundant hard selective sweeps in the genome of the broad host range plant pathogenic fungus Sclerotinia sclerotiorum.

The pathogenic fungus Sclerotinia sclerotiorum infects over 600 species of plant. It is present in numerous environments throughout the world and causes significant damage to many agricultural crops. Fragmentation and lack of gene flow between populations may lead to population sub-structure. Within discrete recombining populations, positive selection may lead to a ‘selective sweep’. This is characterised by an increase in frequency of a favourable allele leading to reduction in genotypic diversity in a localised genomic region due to the phenomenon of genetic hitchhiking. We aimed to assess whether isolates of S. sclerotiorum from around the world formed genotypic clusters associated with geographical origin and to determine whether signatures of population-specific positive selection could be detected. To do this, we sequenced the genomes of 25 isolates of S. sclerotiorum collected from four different continents-Australia, Africa (north and south), Europe and North America (Canada and the northen United States) and conducted SNP based analyses of population structure and selective sweeps. Among the 25 isolates, there was evidence for two major population clusters. One of these consisted of 11 isolates from Canada, the USA and France (population 1), and the other consisted of nine isolates from Australia and one from Morocco (population 2). The rest of the isolates were genotypic outliers. We found that there was evidence of outcrossing in these two populations based on linkage disequilibrium decay. However, only a single candidate selective sweep was observed, and it was present in population 2. This sweep was close to a Major Facilitator Superfamily transporter gene, and we speculate that this gene may have a role in nutrient uptake from the host. The low abundance of selective sweeps in the S. sclerotiorum genome contrasts the numerous examples in the genomes of other fungal pathogens. This may be a result of its slow rate of evolution and low effective recombination rate due to self-fertilisation and vegetative reproduction.


April 21, 2020  |  

Genomic and Functional Characterization of the Endophytic Bacillus subtilis 7PJ-16 Strain, a Potential Biocontrol Agent of Mulberry Fruit Sclerotiniose.

Bacillus sp. 7PJ-16, an endophytic bacterium isolated from a healthy mulberry stem and previously identified as Bacillus tequilensis 7PJ-16, exhibits strong antifungal activity and has the capacity to promote plant growth. This strain was studied for its effectiveness as a biocontrol agent to reduce mulberry fruit sclerotiniose in the field and as a growth-promoting agent for mulberry in the greenhouse. In field studies, the cell suspension and supernatant of strain 7PJ-16 exhibited biocontrol efficacy and the lowest disease incidence was reduced down to only 0.80%. In greenhouse experiments, the cell suspension (1.0?×?106 and 1.0?×?105 CFU/mL) and the cell-free supernatant (100-fold and 1000-fold dilution) stimulated mulberry seed germination and promoted mulberry seedling growth. In addition, to accurately identify the 7PJ-16 strain and further explore the mechanisms of its antifungal and growth-promoting properties, the complete genome of this strain was sequenced and annotated. The 7PJ-16 genome is comprised of two circular plasmids and a 4,209,045-bp circular chromosome, containing 4492 protein-coding genes and 116 RNA genes. This strain was ultimately designed as Bacillus subtilis based on core genome sequence analyses using a phylogenomic approach. In this genome, we identified a series of gene clusters that function in the synthesis of non-ribosomal peptides (surfactin, fengycin, bacillibactin, and bacilysin) as well as the ribosome-dependent synthesis of tasA and bacteriocins (subtilin, subtilosin A), which are responsible for the biosynthesis of numerous antimicrobial metabolites. Additionally, several genes with function that promote plant growth, such as indole-3-acetic acid biosynthesis, the production of volatile substances, and siderophores synthesis, were also identified. The information described in this study has established a good foundation for understanding the beneficial interactions between endophytes and host plants, and facilitates the further application of B. subtilis 7PJ-16 as an agricultural biofertilizer and biocontrol agent.


April 21, 2020  |  

The smut fungus Ustilago esculenta has a bipolar mating system with three idiomorphs larger than 500?kb.

Zizania latifolia Turcz., which is mainly distributed in Asia, has had a long cultivation history as a cereal and vegetable crop. On infection with the smut fungus Ustilago esculenta, Z. latifolia becomes an edible vegetable, water bamboo. Two main cultivars, with a green shell and red shell, are cultivated for commercial production in Taiwan. Previous studies indicated that cultivars of Z. latifolia may be related to the infected U. esculenta isolates. However, related research is limited. The infection process of the corn smut fungus Ustilago maydis is coupled with sexual development and under control of the mating type locus. Thus, we aimed to use the knowledge of U. maydis to reveal the mating system of U. esculenta. We collected water bamboo samples and isolated 145 U. esculenta strains from Taiwan’s major production areas. By using PCR and idiomorph screening among meiotic offspring and field isolates, we identified three idiomorphs of the mating type locus and found no sequence recombination between them. Whole-genome sequencing (Illumina and PacBio) suggested that the mating system of U. esculenta was bipolar. Mating type locus 1 (MAT-1) was 552,895?bp and contained 44% repeated sequences. Sequence comparison revealed that U. esculenta MAT-1 shared high gene synteny with Sporisorium reilianum and many repeats with Ustilago hordei MAT-1. These results can be utilized to further explore the genomic diversity of U. esculenta isolates and their application for water bamboo breeding. Copyright © 2019 Elsevier Inc. All rights reserved.


April 21, 2020  |  

The role of long-term mineral and organic fertilisation treatment in changing pathogen and symbiont community composition in soil

Application of organic fertilisers to soil prevents erosion, improves fertility and may suppress certain soil-borne plant pathogens, but it is still unclear how different trophic groups of fungi and oomycetes respond to long-term fertilisation treatment. The objective of the study was to examine the effect of different fertilisation regimes on fungal and oomycete pathogen- and mycorrhizal symbiont diversity and community structure in both soil and roots, using PacBio SMRT sequencing. The field experiment included three fertilisation treatments that have been applied since 1989: nitrogen fertilisation (WOM), nitrogen fertilisation with manure amendment (FYM) and alternative organic fertilisation (AOF), each applied at five different rates. Soil samples were collected three times during the growing season, while root samples were collected during the flowering stage. There was no influence of the studied variables on soil and root pathogen richness. Contrary to our hypothesis, pathogen relative abundance in both soil and roots was significantly higher in plots with the AOF treatment. Furthermore, richness and relative abundance of arbuscular mycorrhizal (AM) fungi decreased significantly in the AOF treatment. Permutational analysis of variance (PERMANOVA) demonstrated the effect of fertilisation treatment on pathogen community composition in both soil and roots. Our findings indicate that organic fertilisers may not always benefit soil microbial community composition. Therefore, further studies are needed to understand how fertilisation affects mycorrhizal mutualists and pathogens.


April 21, 2020  |  

Antimicrobial, plant growth-promoting and genomic properties of the peanut endophyte Bacillus velezensis LDO2.

Peanut suffer from a number of fungal and bacterial pathogens, while plant endophytes were considered excellent candidates as biocontrol agents. In this study, the peanut endophytic bacterium LDO2 was evaluated for the potential of peanut pathogens inhibition and growth-promotion, and the genetic mechanisms were explored by genome mining. Strain LDO2 significantly inhibited the growth of peanut pathogenic fungi and pathogenic bacteria, and specifically, it showed pronounced inhibition on mycelia growth of Aspergillus flavus mycelia and caused mycelial deformity. Gene clusters responsible for antifungal metabolites (fengycin, surfactin, bacilysin) and antibacterial metabolites (butirosin, bacillaene, difficidin, macrolactin, surfactin, bacilysin) were identified. Strain LDO2 also exhibited several growth-promoting related features including phosphate solubilization, siderophore production and growth promotion of peanut root. Genes associated with plant growth promotion were also identified and analyzed, as well as genes related to secreted proteins. These findings suggested that this peanut endophyte could be a potential biocontrol agent in peanut production and a source of antimicrobial compounds for further exploitation. Copyright © 2018 Elsevier GmbH. All rights reserved.


April 21, 2020  |  

The conservation of polyol transporter proteins and their involvement in lichenized Ascomycota.

In lichen symbiosis, polyol transfer from green algae is important for acquiring the fungal carbon source. However, the existence of polyol transporter genes and their correlation with lichenization remain unclear. Here, we report candidate polyol transporter genes selected from the genome of the lichen-forming fungus (LFF) Ramalina conduplicans. A phylogenetic analysis using characterized polyol and monosaccharide transporter proteins and hypothetical polyol transporter proteins of R. conduplicans and various ascomycetous fungi suggested that the characterized yeast’ polyol transporters form multiple clades with the polyol transporter-like proteins selected from the diverse ascomycetous taxa. Thus, polyol transporter genes are widely conserved among Ascomycota, regardless of lichen-forming status. In addition, the phylogenetic clusters suggested that LFFs belonging to Lecanoromycetes have duplicated proteins in each cluster. Consequently, the number of sequences similar to characterized yeast’ polyol transporters were evaluated using the genomes of 472 species or strains of Ascomycota. Among these, LFFs belonging to Lecanoromycetes had greater numbers of deduced polyol transporter proteins. Thus, various polyol transporters are conserved in Ascomycota and polyol transporter genes appear to have expanded during the evolution of Lecanoromycetes. Copyright © 2019 British Mycological Society. Published by Elsevier Ltd. All rights reserved.


April 21, 2020  |  

Snf2 controls pulcherriminic acid biosynthesis and antifungal activity of the biocontrol yeast Metschnikowia pulcherrima.

Metschnikowia pulcherrima synthesises the pigment pulcherrimin, from cyclodileucine (cyclo(Leu-Leu)) as a precursor, and exhibits strong antifungal activity against notorious plant pathogenic fungi. This yeast therefore has great potential for biocontrol applications against fungal diseases; particularly in the phyllosphere where this species is frequently found. To elucidate the molecular basis of the antifungal activity of M. pulcherrima, we compared a wild-type strain with a spontaneously occurring, pigmentless, weakly antagonistic mutant derivative. Whole genome sequencing of the wild-type and mutant strains identified a point mutation that creates a premature stop codon in the transcriptional regulator gene SNF2 in the mutant. Complementation of the mutant strain with the wild-type SNF2 gene restored pigmentation and recovered the strong antifungal activity. Mass spectrometry (UPLC HR HESI-MS) proved the presence of the pulcherrimin precursors cyclo(Leu-Leu) and pulcherriminic acid and identified new precursor and degradation products of pulcherriminic acid and/or pulcherrimin. All of these compounds were identified in the wild-type and complemented strain, but were undetectable in the pigmentless snf2 mutant strain. These results thus identify Snf2 as a regulator of antifungal activity and pulcherriminic acid biosynthesis in M. pulcherrima and provide a starting point for deciphering the molecular functions underlying the antagonistic activity of this yeast. © 2019 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.


April 21, 2020  |  

Toxin and genome evolution in a Drosophila defensive symbiosis.

Defenses conferred by microbial symbionts play a vital role in the health and fitness of their animal hosts. An important outstanding question in the study of defensive symbiosis is what determines long term stability and effectiveness against diverse natural enemies. In this study, we combine genome and transcriptome sequencing, symbiont transfection and parasite protection experiments, and toxin activity assays to examine the evolution of the defensive symbiosis between Drosophila flies and their vertically transmitted Spiroplasma bacterial symbionts, focusing in particular on ribosome-inactivating proteins (RIPs), symbiont-encoded toxins that have been implicated in protection against both parasitic wasps and nematodes. Although many strains of Spiroplasma, including the male-killing symbiont (sMel) of Drosophila melanogaster, protect against parasitic wasps, only the strain (sNeo) that infects the mycophagous fly Drosophila neotestacea appears to protect against parasitic nematodes. We find that RIP repertoire is a major differentiating factor between strains that do and do not offer nematode protection, and that sMel RIPs do not show activity against nematode ribosomes in vivo. We also discovered a strain of Spiroplasma infecting a mycophagous phorid fly, Megaselia nigra. Although both the host and its Spiroplasma are distantly related to D. neotestacea and its symbiont, genome sequencing revealed that the M. nigra symbiont encodes abundant and diverse RIPs, including plasmid-encoded toxins that are closely related to the RIPs in sNeo. Our results suggest that distantly related Spiroplasma RIP toxins may perform specialized functions with regard to parasite specificity and suggest an important role for horizontal gene transfer in the emergence of novel defensive phenotypes.


April 21, 2020  |  

Genomic Plasticity Mediated by Transposable Elements in the Plant Pathogenic Fungus Colletotrichum higginsianum.

Phytopathogen genomes are under constant pressure to change, as pathogens are locked in an evolutionary arms race with their hosts, where pathogens evolve effector genes to manipulate their hosts, whereas the hosts evolve immune components to recognize the products of these genes. Colletotrichum higginsianum (Ch), a fungal pathogen with no known sexual morph, infects Brassicaceae plants including Arabidopsis thaliana. Previous studies revealed that Ch differs in its virulence toward various Arabidopsis thaliana ecotypes, indicating the existence of coevolutionary selective pressures. However, between-strain genomic variations in Ch have not been studied. Here, we sequenced and assembled the genome of a Ch strain, resulting in a highly contiguous genome assembly, which was compared with the chromosome-level genome assembly of another strain to identify genomic variations between strains. We found that the two closely related strains vary in terms of large-scale rearrangements, the existence of strain-specific regions, and effector candidate gene sets and that these variations are frequently associated with transposable elements (TEs). Ch has a compartmentalized genome consisting of gene-sparse, TE-dense regions with more effector candidate genes and gene-dense, TE-sparse regions harboring conserved genes. Additionally, analysis of the conservation patterns and syntenic regions of effector candidate genes indicated that the two strains vary in their effector candidate gene sets because of de novo evolution, horizontal gene transfer, or gene loss after divergence. Our results reveal mechanisms for generating genomic diversity in this asexual pathogen, which are important for understanding its adaption to hosts. © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


April 21, 2020  |  

Meiotic sex in Chagas disease parasite Trypanosoma cruzi.

Genetic exchange enables parasites to rapidly transform disease phenotypes and exploit new host populations. Trypanosoma cruzi, the parasitic agent of Chagas disease and a public health concern throughout Latin America, has for decades been presumed to exchange genetic material rarely and without classic meiotic sex. We present compelling evidence from 45 genomes sequenced from southern Ecuador that T. cruzi in fact maintains truly sexual, panmictic groups that can occur alongside others that remain highly clonal after past hybridization events. These groups with divergent reproductive strategies appear genetically isolated despite possible co-occurrence in vectors and hosts. We propose biological explanations for the fine-scale disconnectivity we observe and discuss the epidemiological consequences of flexible reproductive modes. Our study reinvigorates the hunt for the site of genetic exchange in the T. cruzi life cycle, provides tools to define the genetic determinants of parasite virulence, and reforms longstanding theory on clonality in trypanosomatid parasites.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.