Menu
June 1, 2021  |  

Automated, non-hybrid de novo genome assemblies and epigenomes of bacterial pathogens.

Understanding the genetic basis of infectious diseases is critical to enacting effective treatments, and several large-scale sequencing initiatives are underway to collect this information. Sequencing bacterial samples is typically performed by mapping sequence reads against genomes of known reference strains. While such resequencing informs on the spectrum of single-nucleotide differences relative to the chosen reference, it can miss numerous other forms of variation known to influence pathogenicity: structural variations (duplications, inversions), acquisition of mobile elements (phages, plasmids), homonucleotide length variation causing phase variation, and epigenetic marks (methylation, phosphorothioation) that influence gene expression to switch bacteria from non- pathogenic to pathogenic states. Therefore, sequencing methods which provide complete, de novo genome assemblies and epigenomes are necessary to fully characterize infectious disease agents in an unbiased, hypothesis-free manner. Hybrid assembly methods have been described that combine long sequence reads from SMRT DNA Sequencing with short reads (SMRT CCS (circular consensus) or second-generation reads), wherein the short reads are used to error-correct the long reads which are then used for assembly. We have developed a new paradigm for microbial de novo assemblies in which SMRT sequencing reads from a single long insert library are used exclusively to close the genome through a hierarchical genome assembly process, thereby obviating the need for a second sample preparation, sequencing run, and data set. We have applied this method to achieve closed de novo genomes with accuracies exceeding QV50 (>99.999%) for numerous disease outbreak samples, including E. coli, Salmonella, Campylobacter, Listeria, Neisseria, and H. pylori. The kinetic information from the same SMRT Sequencing reads is utilized to determine epigenomes. Approximately 70% of all methyltransferase specificities we have determined to date represent previously unknown bacterial epigenetic signatures. With relatively short sequencing run times and automated analysis pipelines, it is possible to go from an unknown DNA sample to its complete de novo genome and epigenome in about a day.


June 1, 2021  |  

Automated, non-hybrid de novo genome assemblies and epigenomes of bacterial pathogens

Understanding the genetic basis of infectious diseases is critical to enacting effective treatments, and several large-scale sequencing initiatives are underway to collect this information. Sequencing bacterial samples is typically performed by mapping sequence reads against genomes of known reference strains. While such resequencing informs on the spectrum of single nucleotide differences relative to the chosen reference, it can miss numerous other forms of variation known to influence pathogenicity: structural variations (duplications, inversions), acquisition of mobile elements (phages, plasmids), homonucleotide length variation causing phase variation, and epigenetic marks (methylation, phosphorothioation) that influence gene expression to switch bacteria from non-pathogenic to pathogenic states. Therefore, sequencing methods which provide complete, de novo genome assemblies and epigenomes are necessary to fully characterize infectious disease agents in an unbiased, hypothesis-free manner. Hybrid assembly methods have been described that combine long sequence reads from SMRT DNA sequencing with short, high-accuracy reads (SMRT (circular consensus sequencing) CCS or second-generation reads) to generate long, highly accurate reads that are then used for assembly. We have developed a new paradigm for microbial de novo assemblies in which long SMRT sequencing reads (average readlengths >5,000 bases) are used exclusively to close the genome through a hierarchical genome assembly process, thereby obviating the need for a second sample preparation, sequencing run and data set. We have applied this method to achieve closed de novo genomes with accuracies exceeding QV50 (>99.999%) to numerous disease outbreak samples, including E. coli, Salmonella, Campylobacter, Listeria, Neisseria, and H. pylori. The kinetic information from the same SMRT sequencing reads is utilized to determine epigenomes. Approximately 70% of all methyltransferase specificities we have determined to date represent previously unknown bacterial epigenetic signatures. The process has been automated and requires less than 1 day from an unknown DNA sample to its complete de novo genome and epigenome.


June 1, 2021  |  

New discoveries from closing Salmonella genomes using Pacific Biosciences continuous long reads.

The newer hierarchical genome assembly process (HGAP) performs de novo assembly using data from a single PacBio long insert library. To assess the benefits of this method, DNA from several Salmonella enterica serovars was isolated from a pure culture. Genome sequencing was performed using Pacific Biosciences RS sequencing technology. The HGAP process enabled us to close sixteen Salmonella subsp. enterica genomes and their associated mobile elements: The ten serotypes include: Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) S. Bareilly, S. Heidelberg, S. Cubana, S. Javiana and S. Typhimurium, S. Newport, S. Montevideo, S. Agona, and S. Tennessee. In addition, we were able to detect novel methyltransferases (MTases) by using the Pacific Biosciences kinetic score distributions showing that each serovar appears to have a novel methylation pattern. For example while all Salmonella serovars examined so far have methylase specific activity for 5’-GATC-3’/3’-CTAG-5’ and 5’-CAGAG-3’/3’-GTCTC-5’ (underlined base indicates a modification), S. Heidelberg is uniquely specific for 5’-ACCANCC-3’/3’-TGGTNGG-5’, while S. Typhimurium has uniquely methylase specific for 5′-GATCAG-3’/3′- CTAGTC-5′ sites, for the samples examined so far. We believe that this may be due to the unique environments and phages that these serotypes have been exposed to. Furthermore, our analysis identified and closed a variety of plasmids such as mobilization plasmids, antimicrobial resistance plasmids and IncX plasmids carrying a Type IV secretion system (T4SS). The VirB/D4 T4SS apparatus is important in that it assists with rapid dissemination of antibiotic resistance and virulence determinants. Presently, only limited information exists regarding the genotypic characterization of drug resistance in S. Heidelberg isolates derived from various host species. Here, we characterize two S. Heidelberg outbreak isolates from two different outbreaks. Both isolates contain the IncX plasmid of approximately 35 kb, and carried the genes virB1, virB2, virB3/4, virB5, virB6, virB7, virB8, virB9, virB10, virB11, virD2, and virD4, that are associated with the T4SS. In addition, the outbreak isolate associated with ground turkey carries a 4,473 bp mobilization plasmid and an incompatibility group (Inc) I1 antimicrobial resistance plasmid encoding resistance to gentamicin (aacC2), beta-lactam (bl2b_tem), streptomycin (aadAI) and tetracycline (tetA, tetR) while the outbreak isolate associated with chicken breast carries the IncI1 plasmid encoding resistance to gentamicin (aacC2), streptomycin (aadAI) and sulfisoxazole (sul1). Using this new technology we explored the genetic elements present in resistant pathogens which will achieve a better understanding of the evolution of Salmonella.


April 21, 2020  |  

LR_Gapcloser: a tiling path-based gap closer that uses long reads to complete genome assembly.

Completing a genome is an important goal of genome assembly. However, many assemblies, including reference assemblies, are unfinished and have a number of gaps. Long reads obtained from third-generation sequencing (TGS) platforms can help close these gaps and improve assembly contiguity. However, current gap-closure approaches using long reads require extensive runtime and high memory usage. Thus, a fast and memory-efficient approach using long reads is needed to obtain complete genomes.We developed LR_Gapcloser to rapidly and efficiently close the gaps in genome assembly. This tool utilizes long reads generated from TGS sequencing platforms. Tested on de novo assembled gaps, repeat-derived gaps, and real gaps, LR_Gapcloser closed a higher number of gaps faster and with a lower error rate and a much lower memory usage than two existing, state-of-the art tools. This tool utilized raw reads to fill more gaps than when using error-corrected reads. It is applicable to gaps in the assemblies by different approaches and from large and complex genomes. After performing gap-closure using this tool, the contig N50 size of the human CHM1 genome was improved from 143 kb to 19 Mb, a 132-fold increase. We also closed the gaps in the Triticum urartu genome, a large genome rich in repeats; the contig N50 size was increased by 40%. Further, we evaluated the contiguity and correctness of six hybrid assembly strategies by combining the optimal TGS-based and next-generation sequencing-based assemblers with LR_Gapcloser. A proposed and optimal hybrid strategy generated a new human CHM1 genome assembly with marked contiguity. The contig N50 value was greater than 28 Mb, which is larger than previous non-reference assemblies of the diploid human genome.LR_Gapcloser is a fast and efficient tool that can be used to close gaps and improve the contiguity of genome assemblies. A proposed hybrid assembly including this tool promises reference-grade assemblies. The software is available at http://www.fishbrowser.org/software/LR_Gapcloser/.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.