June 1, 2021  |  

Mitochondrial DNA sequencing using PacBio SMRT technology

Mitochondrial DNA (mtDNA) is a compact, double-stranded circular genome of 16,569 bp with a cytosine-rich light (L) chain and a guanine-rich heavy (H) chain. mtDNA mutations have been increasingly recognized as important contributors to an array of human diseases such as Parkinson’s disease, Alzheimer’s disease, colorectal cancer and Kearns–Sayre syndrome. mtDNA mutations can affect all of the 1000-10,000 copies of the mitochondrial genome present in a cell (homoplasmic mutation) or only a subset of copies (heteroplasmic mutation). The ratio of normal to mutant mtDNAs within cells is a significant factor in whether mutations will result in disease, as well as the clinical presentation, penetrance, and severity of the phenotype. Over time, heteroplasmic mutations can become homoplastic due to differential replication and random assortment. Full characterization of the mitochondrial genome would involve detection of not only homoplastic but heteroplasmic mutations, as well as complete phasing. Previously, we sequenced human mtDNA on the PacBio RS II System with two partially overlapping amplicons. Here, we present amplification-free, full-length sequencing of linearized mtDNA using the Sequel System. Full-length sequencing allows variant phasing along the entire mitochondrial genome, identification of heteroplasmic variants, and detection of epigenetic modifications that are lost in amplicon-based methods.


September 22, 2019  |  

Gut microbiota, nitric oxide, and microglia as prerequisites for neurodegenerative disorders.

Regulating fluctuating endogenous nitric oxide (NO) levels is necessary for proper physiological functions. Aberrant NO pathways are implicated in a number of neurological disorders, including Alzheimer’s disease (AD) and Parkinson’s disease. The mechanism of NO in oxidative and nitrosative stress with pathological consequences involves reactions with reactive oxygen species (e.g., superoxide) to form the highly reactive peroxynitrite, hydrogen peroxide, hypochloride ions and hydroxyl radical. NO levels are typically regulated by endogenous nitric oxide synthases (NOS), and inflammatory iNOS is implicated in the pathogenesis of neurodegenerative diseases, in which elevated NO mediates axonal degeneration and activates cyclooxygenases to provoke neuroinflammation. NO also instigates a down-regulated secretion of brain-derived neurotrophic factor, which is essential for neuronal survival, development and differentiation, synaptogenesis, and learning and memory. The gut-brain axis denotes communication between the enteric nervous system (ENS) of the GI tract and the central nervous system (CNS) of the brain, and the modes of communication include the vagus nerve, passive diffusion and carrier by oxyhemoglobin. Amyloid precursor protein that forms amyloid beta plaques in AD is normally expressed in the ENS by gut bacteria, but when amyloid beta accumulates, it compromises CNS functions. Escherichia coli and Salmonella enterica are among the many bacterial strains that express and secrete amyloid proteins and contribute to AD pathogenesis. Gut microbiota is essential for regulating microglia maturation and activation, and activated microglia secrete significant amounts of iNOS. Pharmacological interventions and lifestyle modifications to rectify aberrant NO signaling in AD include NOS inhibitors, NMDA receptor antagonists, potassium channel modulators, probiotics, diet, and exercise.


September 22, 2019  |  

Altered expression of the FMR1 splicing variants landscape in premutation carriers.

FMR1 premutation carriers (55-200 CGG repeats) are at risk for developing Fragile X-associated Tremor/Ataxia Syndrome (FXTAS), an adult onset neurodegenerative disorder. Approximately 20% of female carriers will develop Fragile X-associated Primary Ovarian Insufficiency (FXPOI), in addition to a number of clinical problems affecting premutation carriers throughout their life span. Marked elevation in FMR1 mRNA levels have been observed with premutation alleles resulting in RNA toxicity, the leading molecular mechanism proposed for the FMR1 associated disorders observed in premutation carriers. The FMR1 gene undergoes alternative splicing and we have recently reported that the relative abundance of all FMR1 mRNA isoforms is significantly increased in premutation carriers. In this study, we characterized the transcriptional FMR1 isoforms distribution pattern in different tissues and identified a total of 49 isoforms, some of which observed only in premutation carriers and which might play a role in the pathogenesis of FXTAS. Further, we investigated the distribution pattern and expression levels of the FMR1 isoforms in asymptomatic premutation carriers and in those with FXTAS and found no significant differences between the two groups. Our findings suggest that the characterization of the expression levels of the different FMR1 isoforms is fundamental for understanding the regulation of the FMR1 gene as imbalance in their expression could lead to an altered functional diversity with neurotoxic consequences. Their characterization will also help to elucidating the mechanism(s) by which “toxic gain of function” of the FMR1 mRNA may play a role in FXTAS and/or in the other FMR1-associated conditions. Copyright © 2017. Published by Elsevier B.V.


September 22, 2019  |  

Genotype to phenotype: Diet-by-mitochondrial DNA haplotype interactions drive metabolic flexibility and organismal fitness.

Diet may be modified seasonally or by biogeographic, demographic or cultural shifts. It can differentially influence mitochondrial bioenergetics, retrograde signalling to the nuclear genome, and anterograde signalling to mitochondria. All these interactions have the potential to alter the frequencies of mtDNA haplotypes (mitotypes) in nature and may impact human health. In a model laboratory system, we fed four diets varying in Protein: Carbohydrate (P:C) ratio (1:2, 1:4, 1:8 and 1:16 P:C) to four homoplasmic Drosophila melanogaster mitotypes (nuclear genome standardised) and assayed their frequency in population cages. When fed a high protein 1:2 P:C diet, the frequency of flies harbouring Alstonville mtDNA increased. In contrast, when fed the high carbohydrate 1:16 P:C food the incidence of flies harbouring Dahomey mtDNA increased. This result, driven by differences in larval development, was generalisable to the replacement of the laboratory diet with fruits having high and low P:C ratios, perturbation of the nuclear genome and changes to the microbiome. Structural modelling and cellular assays suggested a V161L mutation in the ND4 subunit of complex I of Dahomey mtDNA was mildly deleterious, reduced mitochondrial functions, increased oxidative stress and resulted in an increase in larval development time on the 1:2 P:C diet. The 1:16 P:C diet triggered a cascade of changes in both mitotypes. In Dahomey larvae, increased feeding fuelled increased ß-oxidation and the partial bypass of the complex I mutation. Conversely, Alstonville larvae upregulated genes involved with oxidative phosphorylation, increased glycogen metabolism and they were more physically active. We hypothesise that the increased physical activity diverted energy from growth and cell division and thereby slowed development. These data further question the use of mtDNA as an assumed neutral marker in evolutionary and population genetic studies. Moreover, if humans respond similarly, we posit that individuals with specific mtDNA variations may differentially metabolise carbohydrates, which has implications for a variety of diseases including cardiovascular disease, obesity, and perhaps Parkinson’s Disease.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.