Menu
June 1, 2021  |  

A workflow for the comprehensive detection and prioritization of variants in human genomes with PacBio HiFi reads

PacBio HiFi reads (minimum 99% accuracy, 15-25 kb read length) have emerged as a powerful data type for comprehensive variant detection in human genomes. The HiFi read length extends confident mapping and variant calling to repetitive regions of the genome that are not accessible with short reads. Read length also improves detection of structural variants (SVs), with recall exceeding that of short reads by over 30%. High read quality allows for accurate single nucleotide variant and small indel detection, with precision and recall matching that of short reads. While many tools have been developed to take advantage of these qualities of HiFi reads, there is no end-to-end workflow for the filtering and prioritization of variants uniquely detected with long reads for rare and undiagnosed disease research. We have developed a flexible, modular workflow and web portal for variant analysis from HiFi reads and applied it to a set of rare disease cases unsolved by short-read whole genome sequencing. We expect that broad application of long-read variant detection workflows will solve many more rare disease cases. We have made these tools available at https://github.com/williamrowell/pbRUGD-workflow, and we hope they serve a starting point for developing a robust analysis framework for long read variant detection for rare diseases.


February 5, 2021  |  

PAG Conference: Dawn of the crop pangenome era

To make improvements to crops like corn, soybeans, and canola, scientists at Corteva are building a compendium of crop genomics resources to provide actionable sequence info for genetic discovery, gene-editing,…


April 21, 2020  |  

Lateral transfers of large DNA fragments spread functional genes among grasses.

A fundamental tenet of multicellular eukaryotic evolution is that vertical inheritance is paramount, with natural selection acting on genetic variants transferred from parents to offspring. This lineal process means that an organism’s adaptive potential can be restricted by its evolutionary history, the amount of standing genetic variation, and its mutation rate. Lateral gene transfer (LGT) theoretically provides a mechanism to bypass many of these limitations, but the evolutionary importance and frequency of this process in multicellular eukaryotes, such as plants, remains debated. We address this issue by assembling a chromosome-level genome for the grass Alloteropsis semialata, a species surmised to exhibit two LGTs, and screen it for other grass-to-grass LGTs using genomic data from 146 other grass species. Through stringent phylogenomic analyses, we discovered 57 additional LGTs in the A. semialata nuclear genome, involving at least nine different donor species. The LGTs are clustered in 23 laterally acquired genomic fragments that are up to 170 kb long and have accumulated during the diversification of Alloteropsis. The majority of the 59 LGTs in A. semialata are expressed, and we show that they have added functions to the recipient genome. Functional LGTs were further detected in the genomes of five other grass species, demonstrating that this process is likely widespread in this globally important group of plants. LGT therefore appears to represent a potent evolutionary force capable of spreading functional genes among distantly related grass species. Copyright © 2019 the Author(s). Published by PNAS.


April 21, 2020  |  

The Complete Genome of the Atypical Enteropathogenic Escherichia coli Archetype Isolate E110019 Highlights a Role for Plasmids in Dissemination of the Type III Secreted Effector EspT.

Enteropathogenic Escherichia coli (EPEC) is a leading cause of moderate to severe diarrhea among young children in developing countries, and EPEC isolates can be subdivided into two groups. Typical EPEC (tEPEC) bacteria are characterized by the presence of both the locus of enterocyte effacement (LEE) and the plasmid-encoded bundle-forming pilus (BFP), which are involved in adherence and translocation of type III effectors into the host cells. Atypical EPEC (aEPEC) bacteria also contain the LEE but lack the BFP. In the current report, we describe the complete genome of outbreak-associated aEPEC isolate E110019, which carries four plasmids. Comparative genomic analysis demonstrated that the type III secreted effector EspT gene, an autotransporter gene, a hemolysin gene, and putative fimbrial genes are all carried on plasmids. Further investigation of 65 espT-containing E. coli genomes demonstrated that different espT alleles are associated with multiple plasmids that differ in their overall gene content from the E110019 espT-containing plasmid. EspT has been previously described with respect to its role in the ability of E110019 to invade host cells. While other type III secreted effectors of E. coli have been identified on insertion elements and prophages of the chromosome, we demonstrated in the current study that the espT gene is located on multiple unique plasmids. These findings highlight a role of plasmids in dissemination of a unique E. coli type III secreted effector that is involved in host invasion and severe diarrheal illness.Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

Chromosome-scale assemblies reveal the structural evolution of African cichlid genomes.

African cichlid fishes are well known for their rapid radiations and are a model system for studying evolutionary processes. Here we compare multiple, high-quality, chromosome-scale genome assemblies to elucidate the genetic mechanisms underlying cichlid diversification and study how genome structure evolves in rapidly radiating lineages.We re-anchored our recent assembly of the Nile tilapia (Oreochromis niloticus) genome using a new high-density genetic map. We also developed a new de novo genome assembly of the Lake Malawi cichlid, Metriaclima zebra, using high-coverage Pacific Biosciences sequencing, and anchored contigs to linkage groups (LGs) using 4 different genetic maps. These new anchored assemblies allow the first chromosome-scale comparisons of African cichlid genomes. Large intra-chromosomal structural differences (~2-28 megabase pairs) among species are common, while inter-chromosomal differences are rare (<10 megabase pairs total). Placement of the centromeres within the chromosome-scale assemblies identifies large structural differences that explain many of the karyotype differences among species. Structural differences are also associated with unique patterns of recombination on sex chromosomes. Structural differences on LG9, LG11, and LG20 are associated with reduced recombination, indicative of inversions between the rock- and sand-dwelling clades of Lake Malawi cichlids. M. zebra has a larger number of recent transposable element insertions compared with O. niloticus, suggesting that several transposable element families have a higher rate of insertion in the haplochromine cichlid lineage.This study identifies novel structural variation among East African cichlid genomes and provides a new set of genomic resources to support research on the mechanisms driving cichlid adaptation and speciation. © The Author(s) 2019. Published by Oxford University Press.


April 21, 2020  |  

Pangenomic Approach To Understanding Microbial Adaptations within a Model Built Environment, the International Space Station, Relative to Human Hosts and Soil.

Understanding underlying mechanisms involved in microbial persistence in the built environment (BE) is essential for strategically mitigating potential health risks. To test the hypothesis that BEs impose selective pressures resulting in characteristic adaptive responses, we performed a pangenomics meta-analysis leveraging 189 genomes (accessed from GenBank) of two epidemiologically important taxa, Bacillus cereus and Staphylococcus aureus, isolated from various origins: the International Space Station (ISS; a model BE), Earth-based BEs, soil, and humans. Our objectives were to (i) identify differences in the pangenomic composition of generalist and host-associated organisms, (ii) characterize genes and functions involved in BE-associated selection, and (iii) identify genomic signatures of ISS-derived strains of potential relevance for astronaut health. The pangenome of B. cereus was more expansive than that of S. aureus, which had a dominant core component. Genomic contents of both taxa significantly correlated with isolate origin, demonstrating an importance for biogeography and potential niche adaptations. ISS/BE-enriched functions were often involved in biosynthesis, catabolism, materials transport, metabolism, and stress response. Multiple origin-enriched functions also overlapped across taxa, suggesting conserved adaptive processes. We further characterized two mobile genetic elements with local neighborhood genes encoding biosynthesis and stress response functions that distinctively associated with B. cereus from the ISS. Although antibiotic resistance genes were present in ISS/BE isolates, they were also common in counterparts elsewhere. Overall, despite differences in microbial lifestyle, some functions appear common to remaining viable in the BE, and those functions are not typically associated with direct impacts on human health. IMPORTANCE The built environment contains a variety of microorganisms, some of which pose critical human health risks (e.g., hospital-acquired infection, antibiotic resistance dissemination). We uncovered a combination of complex biological functions that may play a role in bacterial survival under the presumed selective pressures in a model built environment-the International Space Station-by using an approach to compare pangenomes of bacterial strains from two clinically relevant species (B. cereus and S. aureus) isolated from both built environments and humans. Our findings suggest that the most crucial bacterial functions involved in this potential adaptive response are specific to bacterial lifestyle and do not appear to have direct impacts on human health.


April 21, 2020  |  

Complete Genome Sequencing of Bacillus velezensis WRN014, and Comparison with Genome Sequences of other Bacillus velezensis Strains.

Bacillus velezensis strain WRN014 was isolated from banana fields in Hainan, China. Bacillus velezensis is an important member of the plant growth-promoting rhizobacteria (PGPR) which can enhance plant growth and control soil-borne disease. The complete genome of Bacillus velezensis WRN014 was sequenced by combining Illumina Hiseq 2500 system and Pacific Biosciences SMRT high-throughput sequencing technologies. Then, the genome of Bacillus velezensis WRN014, together with 45 other completed genome sequences of the Bacillus velezensis strains, were comparatively studied. The genome of Bacillus velezensis WRN014 was 4,063,541bp in length and contained 4,062 coding sequences, 9 genomic islands and 13 gene clusters. The results of comparative genomic analysis provide evidence that (i) The 46 Bacillus velezensis strains formed 2 obviously closely related clades in phylogenetic trees. (ii) The pangenome in this study is open and is increasing with the addition of new sequenced genomes. (iii) Analysis of single nucleotide polymorphisms (SNPs) revealed local diversification of the 46 Bacillus velezensis genomes. Surprisingly, SNPs were not evenly distributed throughout the whole genome. (iv) Analysis of gene clusters revealed that rich gene clusters spread over Bacillus velezensis strains and some gene clusters are conserved in different strains. This study reveals that the strain WRN014 and other Bacillus velezensis strains have potential to be used as PGPR and biopesticide.


April 21, 2020  |  

Characterizing the major structural variant alleles of the human genome.

In order to provide a comprehensive resource for human structural variants (SVs), we generated long-read sequence data and analyzed SVs for fifteen human genomes. We sequence resolved 99,604 insertions, deletions, and inversions including 2,238 (1.6 Mbp) that are shared among all discovery genomes with an additional 13,053 (6.9 Mbp) present in the majority, indicating minor alleles or errors in the reference. Genotyping in 440 additional genomes confirms the most common SVs in unique euchromatin are now sequence resolved. We report a ninefold SV bias toward the last 5 Mbp of human chromosomes with nearly 55% of all VNTRs (variable number of tandem repeats) mapping to this portion of the genome. We identify SVs affecting coding and noncoding regulatory loci improving annotation and interpretation of functional variation. These data provide the framework to construct a canonical human reference and a resource for developing advanced representations capable of capturing allelic diversity. Copyright © 2018 Elsevier Inc. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.