Menu
June 1, 2021  |  

Sequencing and de novo assembly of the 17q21.31 disease associated region using long reads generated by Pacific Biosciences SMRT Sequencing technology.

Assessment of genome-wide variation revealed regions of the genome with complex, structurally diverse haplotypes that are insufficiently represented in the human reference genome. The 17q21.31 region is one of the most dynamic and complex regions of the human genome. Different haplotypes exist, in direct and inverted orientation, showing evidence of positive selection and predisposing to microdeletion associated with mental retardation. Sequencing of different haplotypes is extremely important to characterize the spectrum of structural variation at this locus. However, de novo assembly with second-generation sequencing reads is still problematic. Using PacBio technology we have sequenced and de novo assembled a tiling path of eight BAC clones (~1.6 Mb region) across this medically relevant region from the library of a hydatidiform mole. Complete hydatidiform moles arise from the fertilization of an enucleated egg from a single sperm and therefore carry a haploid complement of the human genome, eliminating allelic variation that may confound mapping and assembly. The PacBio RS system enables single molecule real time sequencing, featuring long reads and fast turnaround times. With deep sequencing, PacBio reads were able to generate a very uniform sequencing coverage with close to 100% coverage of most of the target interval regions covered. Due to long read lengths, the PacBio RS data could be accurately assembled.


June 1, 2021  |  

Advances in sequence consensus and clustering algorithms for effective de novo assembly and haplotyping applications.

One of the major applications of DNA sequencing technology is to bring together information that is distant in sequence space so that understanding genome structure and function becomes easier on a large scale. The Single Molecule Real Time (SMRT) Sequencing platform provides direct sequencing data that can span several thousand bases to tens of thousands of bases in a high-throughput fashion. In contrast to solving genomic puzzles by patching together smaller piece of information, long sequence reads can decrease potential computation complexity by reducing combinatorial factors significantly. We demonstrate algorithmic approaches to construct accurate consensus when the differences between reads are dominated by insertions and deletions. High-performance implementations of such algorithms allow more efficient de novo assembly with a pre-assembly step that generates highly accurate, consensus-based reads which can be used as input for existing genome assemblers. In contrast to recent hybrid assembly approach, only a single ~10 kb or longer SMRTbell library is necessary for the hierarchical genome assembly process (HGAP). Meanwhile, with a sensitive read-clustering algorithm with the consensus algorithms, one is able to discern haplotypes that differ by less than 1% different from each other over a large region. One of the related applications is to generate accurate haplotype sequences for HLA loci. Long sequence reads that can cover the whole 3 kb to 4 kb diploid genomic regions will simplify the haplotyping process. These algorithms can also be applied to resolve individual populations within mixed pools of DNA molecules that are similar to each, e.g., by sequencing viral quasi-species samples.


June 1, 2021  |  

Automated, non-hybrid de novo genome assemblies and epigenomes of bacterial pathogens.

Understanding the genetic basis of infectious diseases is critical to enacting effective treatments, and several large-scale sequencing initiatives are underway to collect this information. Sequencing bacterial samples is typically performed by mapping sequence reads against genomes of known reference strains. While such resequencing informs on the spectrum of single-nucleotide differences relative to the chosen reference, it can miss numerous other forms of variation known to influence pathogenicity: structural variations (duplications, inversions), acquisition of mobile elements (phages, plasmids), homonucleotide length variation causing phase variation, and epigenetic marks (methylation, phosphorothioation) that influence gene expression to switch bacteria from non- pathogenic to pathogenic states. Therefore, sequencing methods which provide complete, de novo genome assemblies and epigenomes are necessary to fully characterize infectious disease agents in an unbiased, hypothesis-free manner. Hybrid assembly methods have been described that combine long sequence reads from SMRT DNA Sequencing with short reads (SMRT CCS (circular consensus) or second-generation reads), wherein the short reads are used to error-correct the long reads which are then used for assembly. We have developed a new paradigm for microbial de novo assemblies in which SMRT sequencing reads from a single long insert library are used exclusively to close the genome through a hierarchical genome assembly process, thereby obviating the need for a second sample preparation, sequencing run, and data set. We have applied this method to achieve closed de novo genomes with accuracies exceeding QV50 (>99.999%) for numerous disease outbreak samples, including E. coli, Salmonella, Campylobacter, Listeria, Neisseria, and H. pylori. The kinetic information from the same SMRT Sequencing reads is utilized to determine epigenomes. Approximately 70% of all methyltransferase specificities we have determined to date represent previously unknown bacterial epigenetic signatures. With relatively short sequencing run times and automated analysis pipelines, it is possible to go from an unknown DNA sample to its complete de novo genome and epigenome in about a day.


June 1, 2021  |  

Automated, non-hybrid de novo genome assemblies and epigenomes of bacterial pathogens

Understanding the genetic basis of infectious diseases is critical to enacting effective treatments, and several large-scale sequencing initiatives are underway to collect this information. Sequencing bacterial samples is typically performed by mapping sequence reads against genomes of known reference strains. While such resequencing informs on the spectrum of single nucleotide differences relative to the chosen reference, it can miss numerous other forms of variation known to influence pathogenicity: structural variations (duplications, inversions), acquisition of mobile elements (phages, plasmids), homonucleotide length variation causing phase variation, and epigenetic marks (methylation, phosphorothioation) that influence gene expression to switch bacteria from non-pathogenic to pathogenic states. Therefore, sequencing methods which provide complete, de novo genome assemblies and epigenomes are necessary to fully characterize infectious disease agents in an unbiased, hypothesis-free manner. Hybrid assembly methods have been described that combine long sequence reads from SMRT DNA sequencing with short, high-accuracy reads (SMRT (circular consensus sequencing) CCS or second-generation reads) to generate long, highly accurate reads that are then used for assembly. We have developed a new paradigm for microbial de novo assemblies in which long SMRT sequencing reads (average readlengths >5,000 bases) are used exclusively to close the genome through a hierarchical genome assembly process, thereby obviating the need for a second sample preparation, sequencing run and data set. We have applied this method to achieve closed de novo genomes with accuracies exceeding QV50 (>99.999%) to numerous disease outbreak samples, including E. coli, Salmonella, Campylobacter, Listeria, Neisseria, and H. pylori. The kinetic information from the same SMRT sequencing reads is utilized to determine epigenomes. Approximately 70% of all methyltransferase specificities we have determined to date represent previously unknown bacterial epigenetic signatures. The process has been automated and requires less than 1 day from an unknown DNA sample to its complete de novo genome and epigenome.


June 1, 2021  |  

A comparison of assemblers and strategies for complex, large-genome sequencing with PacBio long reads.

PacBio sequencing holds promise for addressing large-genome complexities, such as long, highly repetitive, low-complexity regions and duplication events that are difficult to resolve with short-read technologies. Several strategies, with varying outcomes, are available for de novo sequencing and assembling of larger genomes. Using a diploid fungal genome, estimated to be ~80 Mb in size, as the basis dataset for comparison, we highlight assembly options when using only PacBio sequencing or a combined strategy leveraging data sets from multiple sequencing technologies. Data generated from SMRT Sequencing was subjected to assembly using different large-genome assemblers, and comparisons of the results will be shown. These include results generated with HGAP, Celera Assembler, MIRA, PBJelly, and other assembly tools currently in development. Improvements observed include a near 50% reduction in the number of contigs coupled with at least a doubling of contig N50 size in genome assemblies incorporating SMRT Sequencing data. We further show how incorporating long reads also highlights new challenges and missed insights of short-read assemblies arising from heterozygosity inherent in multiploid genomes.


June 1, 2021  |  

Isoform sequencing: Unveiling the complex landscape in eukaryotic transcriptome on the PacBio RS II.

Advances in RNA sequencing have accelerated our understanding of the transcriptome, however isoform discovery remains challenging due to short read lengths. The Iso-Seq Application provides a new alternative to sequence full-length cDNA libraries using long reads from the PacBio RS II. Identification of long and often rare isoforms is demonstrated with rat heart and lung RNA prepared using the Clontech® SMARTer® cDNA preparation kit, followed by agarose-gel size selection in fractions of 1-2 kb, 2-3 kb and 3-6 kb. For each tissue, 1.8 and 1.2 million reads were obtained from 32 and 26 SMRT Cells, respectively. Filtering for reads with both adapters and polyA tail signals yielded >50% putative full-length transcripts. To improve consensus accuracy, we developed an isoform-level clustering algorithm ICE (Iterative Clustering for Error Correction), and polished full-length consensus sequences from ICE using Quiver. This method generated full-length transcripts up to 4.5 kb with = 99% post-correction accuracy. Compared with known rat genes, the Iso-Seq method not only recovered the majority of currently annotated isoforms, but also several unannotated novel isoforms with identified homologs in the RefSeq database. Additionally, alternative stop sites, extended UTRs, and retained introns were detected.


June 1, 2021  |  

Developments in PacBio metagenome sequencing: Shotgun whole genomes and full-length 16S.

The assembly of metagenomes is dramatically improved by the long read lengths of SMRT Sequencing. This is demonstrated in an experimental design to sequence a mock community from the Human Microbiome Project, and assemble the data using the hierarchical genome assembly process (HGAP) at Pacific Biosciences. Results of this analysis are promising, and display much improved contiguity in the assembly of the mock community as compared to publicly available short-read data sets and assemblies. Additionally, the use of base modification information to make further associations between contigs provides additional data to improve assemblies, and to distinguish between members within a microbial community. The epigenetic approach is a novel validation method unique to SMRT Sequencing. In addition to whole-genome shotgun sequencing, SMRT Sequencing also offers improved classification resolution and reliability of metagenomic and microbiome samples by the full-length sequencing of 16S rRNA (~1500 bases long). Microbial communities can be detected at the species level in some cases, rather than being limited to the genus taxonomic classification as constrained by short-read technologies. The performance of SMRT Sequencing for these metagenomic samples achieved >99% predicted concordance to reference sequences in cecum, soil, water, and mock control investigations for bacterial 16S. Community samples are estimated to contain from 2.3 and up to 15 times as many species with abundance levels as low as 0.05% compared to the identification of phyla groups.


June 1, 2021  |  

SMRT Sequencing solutions for investigative studies to understand evolutionary processes.

Single Molecule, Real-Time (SMRT) Sequencing holds promise for addressing new frontiers to understand molecular mechanisms in evolution and gain insight into adaptive strategies. With read lengths exceeding 10 kb, we are able to sequence high-quality, closed microbial genomes with associated plasmids, and investigate large genome complexities, such as long, highly repetitive, low-complexity regions and multiple tandem-duplication events. Improved genome quality, observed at 99.9999% (QV60) consensus accuracy, and significant reduction of gap regions in reference genomes (up to and beyond 50%) allow researchers to better understand coding sequences with high confidence, investigate potential regulatory mechanisms in noncoding regions, and make inferences about evolutionary strategies that are otherwise missed by the coverage biases associated with short- read sequencing technologies. Additional benefits afforded by SMRT Sequencing include the simultaneous capability to detect epigenomic modifications and obtain full-length cDNA transcripts that obsolete the need for assembly. With direct sequencing of DNA in real-time, this has resulted in the identification of numerous base modifications and motifs, which genome-wide profiles have linked to specific methyltransferase activities. Our new offering, the Iso-Seq Application, allows for the accurate differentiation between transcript isoforms that are difficult to resolve with short-read technologies. PacBio reads easily span transcripts such that both 5’/3’ primers for cDNA library generation and the poly-A tail are observed. As such, exon configuration and intron retention events can be analyzed without ambiguity. This technological advance is useful for characterizing transcript diversity and improving gene structure annotations in reference genomes. We review solutions available with SMRT Sequencing, from targeted sequencing efforts to obtaining reference genomes (>100 Mb). This includes strategies for identifying microsatellites and conducting phylogenetic comparisons with targeted gene families. We highlight how to best leverage our long reads that have exceeded 20 kb in length for research investigations, as well as currently available bioinformatics strategies for analysis. Benefits for these applications are further realized with consistent use of size selection of input sample using the BluePippin™ device from Sage Science as demonstrated in our genome improvement projects. Using the latest P5-C3 chemistry on model organisms, these efforts have yielded an observed contig N50 of ~6 Mb, with the longest contig exceeding 12.5 Mb and an average base quality of QV50.


June 1, 2021  |  

SMRT Sequencing solutions for plant genomes and transcriptomes

Single Molecule, Real-Time (SMRT) Sequencing provides efficient, streamlined solutions to address new frontiers in plant genomes and transcriptomes. Inherent challenges presented by highly repetitive, low-complexity regions and duplication events are directly addressed with multi- kilobase read lengths exceeding 8.5 kb on average, with many exceeding 20 kb. Differentiating between transcript isoforms that are difficult to resolve with short-read technologies is also now possible. We present solutions available for both reference genome and transcriptome research that best leverage long reads in several plant projects including algae, Arabidopsis, rice, and spinach using only the PacBio platform. Benefits for these applications are further realized with consistent use of size-selection of input sample using the BluePippin™ device from Sage Science. We will share highlights from our genome projects using the latest P5- C3 chemistry to generate high-quality reference genomes with the highest contiguity, contig N50 exceeding 1 Mb, and average base quality of QV50. Additionally, the value of long, intact reads to provide a no-assembly approach to investigate transcript isoforms using our Iso-Seq protocol will be presented for full transcriptome characterization and targeted surveys of genes with complex structures. PacBio provides the most comprehensive assembly with annotation when combining offerings for both genome and transcriptome research efforts. For more focused investigation, PacBio also offers researchers opportunities to easily investigate and survey genes with complex structures.


June 1, 2021  |  

Progress on the reassembly and annotation of the goat genome.

The goat (Capra hircus) remains an important livestock species due to the species’ ability to forage and provide milk, meat and wool in arid environments. The current goat reference assembly and annotation borrows heavily from other loosely related livestock species, such as cattle, and may not reflect the unique structural and functional characteristics of the species. We present preliminary data from a new de novo reference assembly for goat that primarily utilizes 38 million PacBio P5-C3 reads generated from an inbred San Clemente goat. This assembly consists of only 5,902 contigs with a contig N50 size of 2.56 megabases which were grouped into scaffolds using cis-chromosome associations generated by the analysis of Hi-C sequence reads. To provide accurate functional genetic annotation, we utilized existing RNA-seq data and generated new data consisting of over 784 million reads from a combination of 27 different developmental timepoints/tissues. This dataset provides a tangible improvement over existing goat genomics resources by correcting over 247 misassemblies in the current goat reference genome and by annotating predicted gene models with actual expressed transcript data. Our goal is to provide a high quality resource to researchers to enable future genomic selection and functional prediction within the field of goat genomics.


June 1, 2021  |  

Genome assembly strategies of the recent polyploid, Coffea arabica.

Arabica coffee, revered for its taste and aroma, has a complex genome. It is an allotetraploid (2n=4x=44) with a genome size of approximately 1.3 Gb, derived from the recent (< 0.6 Mya) hybridization of two diploid progenitors (2n=2x=22), C. canephora (710 Mb) and C. eugenioides (670 Mb). Both parental species diverged recently (< 4.2Mya) and their genomes are highly homologous. To facilitate assembly, a dihaploid plant was chosen for sequencing. Initial genome assembly attempts with short read data produced an assembly covering 1,031 Mb of the C. arabica genome with a contig L50 of 9kb. By implementation of long read PacBio at greater than 50x coverage and cutting-edge PacBio software, a de novo PacBio-only genome assembly was constructed that covers 1,042 Mb of the genome with an L50 of 267 kb. The two assemblies were assessed and compared to determine gene content, chimeric regions, and the ability to separate the parental genomes. A genetic map that contains 600 SSRs is being used for anchoring the contigs and improve the sub-genome differentiation together with the search of sub-genome specific SNPs. PacBio transcriptome sequencing is currently being added to finalize gene annotation of the polished assembly. The finished genome assembly will be used to guide re-sequencing assemblies of parental genomes (C. canephora and C. eugenioides) as well as a template for GBS analysis and whole genome re-sequencing of a set of C. arabica accessions representative of the species diversity. The obtained data will provide powerful genomic tools to enable more efficient coffee breeding strategies for this crop, which is highly susceptible to climate change and is the main source of income for millions of small farmers in producing countries.


June 1, 2021  |  

Targeted SMRT Sequencing and phasing using Roche NimbleGen’s SeqCap EZ enrichment

As a cost-effective alternative to whole genome human sequencing, targeted sequencing of specific regions, such as exomes or panels of relevant genes, has become increasingly common. These methods typically include direct PCR amplification of the genomic DNA of interest, or the capture of these targets via probe-based hybridization. Commonly, these approaches are designed to amplify or capture exonic regions and thereby result in amplicons or fragments that are a few hundred base pairs in length, a length that is well-addressed with short-read sequencing technologies. These approaches typically provide very good coverage and can identify SNPs in the targeted region, but are unable to haplotype these variants. Here we describe a targeted sequencing workflow that combines Roche NimbleGen’s SeqCap EZ enrichment technology with Pacific Biosciences’ SMRT Sequencing to provide a more comprehensive view of variants and haplotype information over multi-kilobase regions. While the SeqCap EZ technology is typically used to capture 200 bp fragments, we demonstrate that 6 kb fragments can also be utilized to enrich for long fragments that extend beyond the targeted capture site and well into (and often across) the flanking intronic regions. When combined with the long reads of SMRT Sequencing, multi-kilobase regions of the human genome can be phased and variants detected in exons, introns and intergenic regions.


June 1, 2021  |  

Full-length isoform sequencing of the human MCF-7 cell line using PacBio long reads.

While advances in RNA sequencing methods have accelerated our understanding of the human transcriptome, isoform discovery remains a challenge because short read lengths require complicated assembly algorithms to infer the contiguity of full-length transcripts. With PacBio’s long reads, one can now sequence full-length transcript isoforms up to 10 kb. The PacBio Iso- Seq protocol produces reads that originate from independent observations of single molecules, meaning no assembly is needed. Here, we sequenced the transcriptome of the human MCF-7 breast cancer cell line using the Clontech SMARTer® cDNA preparation kit and the PacBio RS II. Using PacBio Iso-Seq bioinformatics software, we obtained 55,770 unique, full-length, high-quality transcript sequences that were subsequently mapped back to the human genome with = 99% accuracy. In addition, we identified both known and novel fusion transcripts. To assess our results, we compared the predicted ORFs from the PacBio data against a published mass spectrometry dataset from the same cell line. 84% of the proteins identified with the Uniprot protein database were recovered by the PacBio predictions. Notably, 251 peptides solely matched to the PacBio generated ORFs and were entirely novel, including abundant cases of single amino acid polymorphisms, cassette exon splicing and potential alternative protein coding frames.


June 1, 2021  |  

Highly contiguous de novo human genome assembly and long-range haplotype phasing using SMRT Sequencing

The long reads, random error, and unbiased sampling of SMRT Sequencing enables high quality, de novo assembly of the human genome. PacBio long reads are capable of resolving genomic variations at all size scales, including SNPs, insertions, deletions, inversions, translocations, and repeat expansions, all of which are important in understanding the genetic basis for human disease and difficult to access via other technologies. In demonstration of this, we report a new high-quality, diploid aware de novo assembly of Craig Venter’s well-studied genome.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.