Menu
July 7, 2019  |  

High-quality draft genome sequence of the Thermus amyloliquefaciens type strain YIM 77409(T) with an incomplete denitrification pathway.

Thermus amyloliquefaciens type strain YIM 77409(T) is a thermophilic, Gram-negative, non-motile and rod-shaped bacterium isolated from Niujie Hot Spring in Eryuan County, Yunnan Province, southwest China. In the present study we describe the features of strain YIM 77409(T) together with its genome sequence and annotation. The genome is 2,160,855 bp long and consists of 6 scaffolds with 67.4 % average GC content. A total of 2,313 genes were predicted, comprising 2,257 protein-coding and 56 RNA genes. The genome is predicted to encode a complete glycolysis, pentose phosphate pathway, and tricarboxylic acid cycle. Additionally, a large number of transporters and enzymes for heterotrophy highlight the broad heterotrophic lifestyle of this organism. A denitrification gene cluster included genes predicted to encode enzymes for the sequential reduction of nitrate to nitrous oxide, consistent with the incomplete denitrification phenotype of this strain.


July 7, 2019  |  

Indica rice genome assembly, annotation and mining of blast disease resistance genes.

Rice is a major staple food crop in the world. Over 80 % of rice cultivation area is under indica rice. Currently, genomic resources are lacking for indica as compared to japonica rice. In this study, we generated deep-sequencing data (Illumina and Pacific Biosciences sequencing) for one of the indica rice cultivars, HR-12 from India.We assembled over 86 % (389 Mb) of rice genome and annotated 56,284 protein-coding genes from HR-12 genome using Illumina and PacBio sequencing. Comprehensive comparative analyses between indica and japonica subspecies genomes revealed a large number of indica specific variants including SSRs, SNPs and InDels. To mine disease resistance genes, we sequenced few indica rice cultivars that are reported to be highly resistant (Tetep and Tadukan) and susceptible (HR-12 and Co-39) against blast fungal isolates in many countries including India. Whole genome sequencing of rice genotypes revealed high rate of mutations in defense related genes (NB-ARC, LRR and PK domains) in resistant cultivars as compared to susceptible. This study has identified R-genes Pi-ta and Pi54 from durable indica resistant cultivars; Tetep and Tadukan, which can be used in marker assisted selection in rice breeding program.This is the first report of whole genome sequencing approach to characterize Indian rice germplasm. The genomic resources from our work will have a greater impact in understanding global rice diversity, genetics and molecular breeding.


July 7, 2019  |  

Horizontal gene acquisitions, mobile element proliferation, and genome decay in the host-restricted plant pathogen Erwinia tracheiphila.

Modern industrial agriculture depends on high-density cultivation of genetically similar crop plants, creating favorable conditions for the emergence of novel pathogens with increased fitness in managed compared with ecologically intact settings. Here, we present the genome sequence of six strains of the cucurbit bacterial wilt pathogen Erwinia tracheiphila (Enterobacteriaceae) isolated from infected squash plants in New York, Pennsylvania, Kentucky, and Michigan. These genomes exhibit a high proportion of recent horizontal gene acquisitions, invasion and remarkable amplification of mobile genetic elements, and pseudogenization of approximately 20% of the coding sequences. These genome attributes indicate that E. tracheiphila recently emerged as a host-restricted pathogen. Furthermore, chromosomal rearrangements associated with phage and transposable element proliferation contribute to substantial differences in gene content and genetic architecture between the six E. tracheiphila strains and other Erwinia species. Together, these data lead us to hypothesize that E. tracheiphila has undergone recent evolution through both genome decay (pseudogenization) and genome expansion (horizontal gene transfer and mobile element amplification). Despite evidence of dramatic genomic changes, the six strains are genetically monomorphic, suggesting a recent population bottleneck and emergence into E. tracheiphila’s current ecological niche. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019  |  

Complete genome sequence of Salmonella enterica serovar Typhimurium strain SO2 (sequence type 302) isolated from an asymptomatic child in Mexico.

The complete genome sequence of Salmonella enterica serovar Typhimurium strain SO2, isolated from an asymptomatic child in Mexico, was determined using PacBio single-molecule real-time technology. Strain SO2 has six complete chromosomal prophages, namely, ST104, Gifsy-2, ST64B, Gifsy-1, ELPhiS, and FSL SP-004, and carries a Salmonella virulence plasmid.


July 7, 2019  |  

Complete genome sequence of Enterococcus faecium commensal isolate E1002.

The emergence of vancomycin-resistant enterococci (VRE) has been associated with an increase in multidrug-resistant nosocomial infections. Here, we report the 2.614-Mb genome sequence of the Enterococcus faecium commensal isolate E1002, which will be instrumental in further understanding the determinants of the commensal and pathogenic lifestyle of E. faecium. Copyright © 2016 Tytgat et al.


July 7, 2019  |  

Refined Pichia pastoris reference genome sequence.

Strains of the species Komagataella phaffii are the most frequently used “Pichia pastoris” strains employed for recombinant protein production as well as studies on peroxisome biogenesis, autophagy and secretory pathway analyses. Genome sequencing of several different P. pastoris strains has provided the foundation for understanding these cellular functions in recent genomics, transcriptomics and proteomics experiments. This experimentation has identified mistakes, gaps and incorrectly annotated open reading frames in the previously published draft genome sequences. Here, a refined reference genome is presented, generated with genome and transcriptome sequencing data from multiple P. pastoris strains. Twelve major sequence gaps from 20 to 6000 base pairs were closed and 5111 out of 5256 putative open reading frames were manually curated and confirmed by RNA-seq and published LC-MS/MS data, including the addition of new open reading frames (ORFs) and a reduction in the number of spliced genes from 797 to 571. One chromosomal fragment of 76kbp between two previous gaps on chromosome 1 and another 134kbp fragment at the end of chromosome 4, as well as several shorter fragments needed re-orientation. In total more than 500 positions in the genome have been corrected. This reference genome is presented with new chromosomal numbering, positioning ribosomal repeats at the distal ends of the four chromosomes, and includes predicted chromosomal centromeres as well as the sequence of two linear cytoplasmic plasmids of 13.1 and 9.5kbp found in some strains of P. pastoris. Copyright © 2016. Published by Elsevier B.V.


July 7, 2019  |  

Complete genome sequence of Rufibacter sp. DG31D, a bacterium resistant to gamma and UV radiation toxicity

The ionizing radiation toxicity becomes a major concern for the modern world, recent years, several special interest has been given to the research for the radiation resistant and the mechanisms of which the radiation resistant bacteria survive after the irradiation. In the current study, we have isolated strain DG31D was isolated from gamma ray-irradiated soil sample and showed resistant to gamma and UV radiation. The aim of this study is to understanding the radiation resistant mechanisms and their genomic features of the strain DG31D, which can be potentially used for the biotechnological application to degrade harmful soil contamination near the nuclear power stations and other radiation-affected areas. Strain DG31D showed resistant to UV and gamma radiation with D10 value of 10 kGy. The genome comprised of 4,820,793 bp with the G+C content of 51.4%. It contains the genomic features of enzymes involved in the nucleotide excision repair (NER) pathway that protect the damaged DNA.


July 7, 2019  |  

Complete genome sequence of Salmonella enterica serovar Typhimurium strain SO3 (sequence type 302) isolated from a baby with meningitis in Mexico.

The complete genome of Salmonella entericaserovar Typhimurium strain SO3 (sequence type 302), isolated from a fatal meningitis infection in Mexico, was determined using PacBio technology. The chromosome hosts six complete prophages and is predicted to harbor 51 genomic islands, including 13 pathogenicity islands (SPIs). It carries the Salmonella virulence plasmid (pSTV). Copyright © 2016 Vinuesa et al.


July 7, 2019  |  

An improved genome assembly of Azadirachta indica A. Juss.

Neem (Azadirachta indica A. Juss.), an evergreen tree of the Meliaceae family, is known for its medicinal, cosmetic, pesticidal and insecticidal properties. We had previously sequenced and published the draft genome of the plant, using mainly short read sequencing data. In this report, we present an improved genome assembly generated using additional short reads from Illumina and long reads from Pacific Biosciences SMRT sequencer. We assembled short reads and error corrected long reads using Platanus, an assembler designed to perform well for heterozygous genomes. The updated genome assembly (v2.0) yielded 3- and 3.5-fold increase in N50 and N75, respectively; 2.6-fold decrease in the total number of scaffolds; 1.25-fold increase in the number of valid transcriptome alignments; 13.4-fold less mis-assembly and 1.85-fold increase in the percentage repeat, over the earlier assembly (v1.0). The current assembly also maps better to the genes known to be involved in the terpenoid biosynthesis pathway. Together, the data represents an improved assembly of the A. indica genome. The raw data described in this manuscript are submitted to the NCBI Short Read Archive under the accession numbers SRX1074131, SRX1074132, SRX1074133, and SRX1074134 (SRP013453). Copyright © 2016 Author et al.


July 7, 2019  |  

Complete genome sequence of pseudorabies virus reference strain NIA3 using single-molecule real-time sequencing.

Pseudorabies virus (PRV) is the causative agent of Aujeszky’s disease in pigs. PRV strains are also used as model organisms for the study of alphaherpesvirus biology or for neuronal pathway studies. We present here the complete genome of the virulent wild-type PRV reference strain NIA3, determined by single-molecule real-time sequencing. Copyright © 2016 Mathijs et al.


July 7, 2019  |  

Genome sequence of Propionibacterium acidipropionici ATCC 55737.

Propionibacterium acidipropionici produces propionic acid as its main fermentation product. Traditionally derived from fossil fuels, environmental and sustainable issues have revived the interest in producing propionic acid using biological resources. Here, we present the closed sequence of Propionibacterium acidipropionici ATCC 55737, an efficient propionic acid producer. Copyright © 2016 Luna-Flores et al.


July 7, 2019  |  

First report of blaIMP-14 on a plasmid harboring multiple drug resistance genes in Escherichia coli ST131.

The blaIMP-14 carbapenem resistance gene has largely previously been observed in Pseudomonas aeruginosa and Acinetobacter spp. As part of global surveillance and sequencing of carbapenem-resistant E. coli, we identified an ST131 strain harboring blaIMP-14 within a class 1 integron, itself nested within a ~54kb multi-drug resistance region on an epidemic IncA/C2 plasmid. The emergence of blaIMP-14 in this context in the ST131 lineage is of potential clinical concern. Copyright © 2016 Stoesser et al.


July 7, 2019  |  

The rubber tree genome shows expansion of gene family associated with rubber biosynthesis.

Hevea brasiliensis Muell. Arg, a member of the family Euphorbiaceae, is the sole natural resource exploited for commercial production of high-quality natural rubber. The properties of natural rubber latex are almost irreplaceable by synthetic counterparts for many industrial applications. A paucity of knowledge on the molecular mechanisms of rubber biosynthesis in high yield traits still persists. Here we report the comprehensive genome-wide analysis of the widely planted H. brasiliensis clone, RRIM 600. The genome was assembled based on ~155-fold combined coverage with Illumina and PacBio sequence data and has a total length of 1.55?Gb with 72.5% comprising repetitive DNA sequences. A total of 84,440 high-confidence protein-coding genes were predicted. Comparative genomic analysis revealed strong synteny between H. brasiliensis and other Euphorbiaceae genomes. Our data suggest that H. brasiliensis’s capacity to produce high levels of latex can be attributed to the expansion of rubber biosynthesis-related genes in its genome and the high expression of these genes in latex. Using cap analysis gene expression data, we illustrate the tissue-specific transcription profiles of rubber biosynthesis-related genes, revealing alternative means of transcriptional regulation. Our study adds to the understanding of H. brasiliensis biology and provides valuable genomic resources for future agronomic-related improvement of the rubber tree.


July 7, 2019  |  

Lactobacillus rhamnosus GG outcompetes Enterococcus faecium by mucus-binding pili – Evidence for a novel probiotic mechanism on a distance.

Vancomycin-resistant enterococci (VRE) have become a major nosocomial threat. Enterococcus faecium is of special concern, as it can easily acquire new antibiotic resistances and is an excellent colonizer of the human intestinal tract. Several clinical studies have explored the potential use of beneficial bacteria to weed out opportunistic pathogens. Specifically, the widely studied Lactobacillus rhamnosus strain GG has been applied successfully in the context of VRE infections. Here, we provide new insight into the molecular mechanism underlying the effects of this model probiotic on VRE decolonization. Both clinical VRE isolates and L. rhamnosus GG express pili on their cell walls, which are the key modulators of their highly efficient colonization of the intestinal mucosa. We found that one of the VRE pilus clusters shares considerable sequence similarity with the SpaCBA-SrtC1 pilus cluster of L. rhamnosus GG. Remarkable immunological and functional similarities were discovered between the mucus-binding pili of L. rhamnosus GG and those of the clinical E. faecium strain E1165, which was characterized at the genome level. Moreover, E. faecium strain E1165 bound efficiently to mucus, which may be prevented by the presence of the mucus-binding SpaC protein or antibodies against L. rhamnosus GG or SpaC. These results present experimental support for a novel probiotic mechanism, in which the mucus-binding pili of L. rhamnosus GG prevent the binding of a potential pathogen to the host. Hence, we provide a molecular basis for the further exploitation of L. rhamnosus GG and its pilins for prophylaxis and treatment of VRE infections. IMPORTANCE Concern about vancomycin-resistant Enterococcus faecium causing nosocomial infections is rising globally. The arsenal of antibiotic strategies to treat these infections is nearly exhausted, and hence, new treatment strategies are urgently needed. Here, we provide molecular evidence to underpin reports of the successful clinical application of Lactobacillus rhamnosus GG in VRE decolonization strategies. Our results provide support for a new molecular mechanism, in which probiotics can perform competitive exclusion and possibly immune interaction. Moreover, we spur further exploration of the potential of intact L. rhamnosus GG and purified SpaC pilin as prophylactic and curative agents of the VRE carrier state.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.