Menu
July 7, 2019  |  

Lost in plasmids: next generation sequencing and the complex genome of the tick-borne pathogen Borrelia burgdorferi.

Borrelia (B.) burgdorferi sensu lato, including the tick-transmitted agents of human Lyme borreliosis, have particularly complex genomes, consisting of a linear main chromosome and numerous linear and circular plasmids. The number and structure of plasmids is variable even in strains within a single genospecies. Genes on these plasmids are known to play essential roles in virulence and pathogenicity as well as host and vector associations. For this reason, it is essential to explore methods for rapid and reliable characterisation of molecular level changes on plasmids. In this study we used three strains: a low passage isolate of B. burgdorferi sensu stricto strain B31(-NRZ) and two closely related strains (PAli and PAbe) that were isolated from human patients. Sequences of these strains were compared to the previously sequenced reference strain B31 (available in GenBank) to obtain proof-of-principle information on the suitability of next generation sequencing (NGS) library construction and sequencing methods on the assembly of bacterial plasmids. We tested the effectiveness of different short read assemblers on Illumina sequences, and of long read generation methods on sequence data from Pacific Bioscience single-molecule real-time (SMRT) and nanopore (Oxford Nanopore Technologies) sequencing technology.Inclusion of mate pair library reads improved the assembly in some plasmids as did prior enrichment of plasmids. While cp32 plasmids remained refractory to assembly using only short reads they were effectively assembled by long read sequencing methods. The long read SMRT and nanopore sequences came, however, at the cost of indels (insertions or deletions) appearing in an unpredictable manner. Using long and short read technologies together allowed us to show that the three B. burgdorferi s.s. strains investigated here, whilst having similar plasmid structures to each other (apart from fusion of cp32 plasmids), differed significantly from the reference strain B31-GB, especially in the case of cp32 plasmids.Short read methods are sufficient to assemble the main chromosome and many of the plasmids in B. burgdorferi. However, a combination of short and long read sequencing methods is essential for proper assembly of all plasmids including cp32 and thus, for gaining an understanding of host- or vector adaptations. An important conclusion from our work is that the evolution of Borrelia plasmids appears to be dynamic. This has important implications for the development of useful research strategies to monitor the risk of Lyme disease occurrence and how to medically manage it.


July 7, 2019  |  

Genome sequences for Streptomyces spp. isolated from disease-suppressive soils and long-term ecological research sites.

We report here the high-quality genome sequences of three Streptomyces spp. isolated as part of a long-term study of microbial soil ecology. Streptomyces sp. strain GS93-23 was isolated from naturally disease-suppressive soil (DSS) in Grand Rapids, MN, and Streptomyces sp. strains S3-4 and 3211-3 were isolated from experimental plots in the Cedar Creek Ecosystem Science Reserve (CCESR). Copyright © 2017 Heinsch et al.


July 7, 2019  |  

De novo yeast genome assemblies from MinION, PacBio and MiSeq platforms.

Long-read sequencing technologies such as Pacific Biosciences and Oxford Nanopore MinION are capable of producing long sequencing reads with average fragment lengths of over 10,000 base-pairs and maximum lengths reaching 100,000 base- pairs. Compared with short reads, the assemblies obtained from long-read sequencing platforms have much higher contig continuity and genome completeness as long fragments are able to extend paths into problematic or repetitive regions. Many successful assembly applications of the Pacific Biosciences technology have been reported ranging from small bacterial genomes to large plant and animal genomes. Recently, genome assemblies using Oxford Nanopore MinION data have attracted much attention due to the portability and low cost of this novel sequencing instrument. In this paper, we re-sequenced a well characterized genome, the Saccharomyces cerevisiae S288C strain using three different platforms: MinION, PacBio and MiSeq. We present a comprehensive metric comparison of assemblies generated by various pipelines and discuss how the platform associated data characteristics affect the assembly quality. With a given read depth of 31X, the assemblies from both Pacific Biosciences and Oxford Nanopore MinION show excellent continuity and completeness for the 16 nuclear chromosomes, but not for the mitochondrial genome, whose reconstruction still represents a significant challenge.


July 7, 2019  |  

Coping with living in the soil: the genome of the parthenogenetic springtail Folsomia candida.

Folsomia candida is a model in soil biology, belonging to the family of Isotomidae, subclass Collembola. It reproduces parthenogenetically in the presence of Wolbachia, and exhibits remarkable physiological adaptations to stress. To better understand these features and adaptations to life in the soil, we studied its genome in the context of its parthenogenetic lifestyle.We applied Pacific Bioscience sequencing and assembly to generate a reference genome for F. candida of 221.7 Mbp, comprising only 162 scaffolds. The complete genome of its endosymbiont Wolbachia, was also assembled and turned out to be the largest strain identified so far. Substantial gene family expansions and lineage-specific gene clusters were linked to stress response. A large number of genes (809) were acquired by horizontal gene transfer. A substantial fraction of these genes are involved in lignocellulose degradation. Also, the presence of genes involved in antibiotic biosynthesis was confirmed. Intra-genomic rearrangements of collinear gene clusters were observed, of which 11 were organized as palindromes. The Hox gene cluster of F. candida showed major rearrangements compared to arthropod consensus cluster, resulting in a disorganized cluster.The expansion of stress response gene families suggests that stress defense was important to facilitate colonization of soils. The large number of HGT genes related to lignocellulose degradation could be beneficial to unlock carbohydrate sources in soil, especially those contained in decaying plant and fungal organic matter. Intra- as well as inter-scaffold duplications of gene clusters may be a consequence of its parthenogenetic lifestyle. This high quality genome will be instrumental for evolutionary biologists investigating deep phylogenetic lineages among arthropods and will provide the basis for a more mechanistic understanding in soil ecology and ecotoxicology.


July 7, 2019  |  

ConcatSeq: A method for increasing throughput of single molecule sequencing by concatenating short DNA fragments.

Single molecule sequencing (SMS) platforms enable base sequences to be read directly from individual strands of DNA in real-time. Though capable of long read lengths, SMS platforms currently suffer from low throughput compared to competing short-read sequencing technologies. Here, we present a novel strategy for sequencing library preparation, dubbed ConcatSeq, which increases the throughput of SMS platforms by generating long concatenated templates from pools of short DNA molecules. We demonstrate adaptation of this technique to two target enrichment workflows, commonly used for oncology applications, and feasibility using PacBio single molecule real-time (SMRT) technology. Our approach is capable of increasing the sequencing throughput of the PacBio RSII platform by more than five-fold, while maintaining the ability to correctly call allele frequencies of known single nucleotide variants. ConcatSeq provides a versatile new sample preparation tool for long-read sequencing technologies.


July 7, 2019  |  

Unravelling the complete genome of Archangium gephyra DSM 2261T and evolutionary insights into myxobacterial chitinases.

Family Cystobacteraceae is a group of eubacteria within order Myxococcales and class Deltaproteobacteria that includes more than 20 species belonging to 6 genera, that is, Angiococcus, Archangium, Cystobacter, Hyalangium, Melittangium, and Stigmatella. Earlier these members have been classified based on chitin degrading efficiency such as Cystobacter fuscus and Stigmatella aurantiaca, which are efficient chitin degraders, C. violaceus a partial chitin degrader and Archangium gephyra a chitin nondegrader. Here we report the 12.5 Mbp complete genome of A. gephyra DSM 2261T and compare it with four available genomes within the family Cystobacteraceae. Phylogeny and DNA-DNA hybridization studies reveal that A. gephyra is closest to Angiococcus disciformis, C. violaceus and C. ferrugineus, which are partial chitin degraders of the family Cystobacteraceae. Homology studies reveal the conservation of approximately half of the proteins in these genomes, with about 15% unique proteins in each genome. The total carbohydrate-active enzymes (CAZome) analysis reveals the presence of one GH18 chitinase in the A. gephyra genome whereas eight copies are present in C. fuscus and S. aurantiaca. Evolutionary studies of myxobacterial GH18 chitinases reveal that most of them are likely related to Terrabacteria and Proteobacteria whereas the Archangium GH18 homolog shares maximum similarity with those of chitin nondegrading Acidobacteria.© The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019  |  

Whole-genome restriction mapping by “subhaploid”-based RAD sequencing: An efficient and flexible approach for physical mapping and genome scaffolding.

Assembly of complex genomes using short reads remains a major challenge, which usually yields highly fragmented assemblies. Generation of ultradense linkage maps is promising for anchoring such assemblies, but traditional linkage mapping methods are hindered by the infrequency and unevenness of meiotic recombination that limit attainable map resolution. Here we develop a sequencing-based “in vitro” linkage mapping approach (called RadMap), where chromosome breakage and segregation are realized by generating hundreds of “subhaploid” fosmid/bacterial-artificial-chromosome clone pools, and by restriction site-associated DNA sequencing of these clone pools to produce an ultradense whole-genome restriction map to facilitate genome scaffolding. A bootstrap-based minimum spanning tree algorithm is developed for grouping and ordering of genome-wide markers and is implemented in a user-friendly, integrated software package (AMMO). We perform extensive analyses to validate the power and accuracy of our approach in the model plant Arabidopsis thaliana and human. We also demonstrate the utility of RadMap for enhancing the contiguity of a variety of whole-genome shotgun assemblies generated using either short Illumina reads (300 bp) or long PacBio reads (6-14 kb), with up to 15-fold improvement of N50 (~816 kb-3.7 Mb) and high scaffolding accuracy (98.1-98.5%). RadMap outperforms BioNano and Hi-C when input assembly is highly fragmented (contig N50 = 54 kb). RadMap can capture wide-range contiguity information and provide an efficient and flexible tool for high-resolution physical mapping and scaffolding of highly fragmented assemblies. Copyright © 2017 Dou et al.


July 7, 2019  |  

Complete genome sequence of Pseudomonas antarctica PAMC 27494, a bacteriocin-producing psychrophile isolated from Antarctica.

Antimicrobial-producing, cold-adapted microorganisms have great potential for biotechnological applications in food, pharmaceutical, and cosmetic industries. Pseudomonas antarctica PAMC 27494, a psychrophile exhibiting antimicrobial activity, was isolated from an Antarctic freshwater sample. Here we report the complete genome of P. antarctica PAMC 27494. The strain contains a gene cluster encoding microcin B which inhibits DNA regulations by targeting the DNA gyrase. PAMC 27494 may produce R-type pyocins and also contains a complete set of proteins for the biosynthesis of adenosylcobalamin and possibly induces plant growth by supplying pyrroloquinoline quionone molecules. Copyright © 2017 Elsevier B.V. All rights reserved.


July 7, 2019  |  

The genome of the cotton bacterial blight pathogen Xanthomonas citri pv. malvacearum strain MSCT1.

Xanthomonas citri pv. malvacearum is a major pathogen of cotton, Gossypium hirsutum L.. In this study we report the complete genome of the X. citri pv. malvacearum strain MSCT1 assembled from long read DNA sequencing technology. The MSCT1 genome is the first X. citri pv. malvacearum genome with complete coding regions for X. citri pv. malvacearum transcriptional activator-like effectors. In addition functional and structural annotations are presented in this study that will provide a foundation for future pathogenesis studies with MSCT1.


July 7, 2019  |  

Complete genome sequence of Hymenobacter sedentarius DG5BT, a bacterium resistant to gamma radiation

The ionizing radiation toxicity becomes a primary concern of the world; several exceptional attention was given to the resistance mechanisms of the radiation-resistant bacteria. Hymenobacter sedentarius DG5BT strain isolated from the gamma ray-irradiated soil samples shows resistance against gamma and UV radiation; however, their level of resistance is lower than that of other radiation resistant bacteria. To gain insight of radiation resistance, we carried out the whole genome sequencing of this strain. The genome of DG5BT strain is comprised of 4,868,852 bp (G+C content of 60.96%) including 3,994 protein-coding genes and 55 RNA genes. When compared with other bacteria, there are differences in compositions and copy numbers of several genes involved in DNA repair pathways and defense mechanism against protein damages. In this study, we discuss the implication of such findings concerning other radiation resistant bacteria.


July 7, 2019  |  

Whole genome sequence of two Rathayibacter toxicus strains reveals a tunicamycin biosynthetic cluster similar to Streptomyces chartreusis.

Rathayibacter toxicus is a forage grass associated Gram-positive bacterium of major concern to food safety and agriculture. This species is listed by USDA-APHIS as a plant pathogen select agent because it produces a tunicamycin-like toxin that is lethal to livestock and may be vectored by nematode species native to the U.S. The complete genomes of two strains of R. toxicus, including the type strain FH-79, were sequenced and analyzed in comparison with all available, complete R. toxicus genomes. Genome sizes ranged from 2,343,780 to 2,394,755 nucleotides, with 2079 to 2137 predicted open reading frames; all four strains showed remarkable synteny over nearly the entire genome, with only a small transposed region. A cluster of genes with similarity to the tunicamycin biosynthetic cluster from Streptomyces chartreusis was identified. The tunicamycin gene cluster (TGC) in R. toxicus contained 14 genes in two transcriptional units, with all of the functional elements for tunicamycin biosynthesis present. The TGC had a significantly lower GC content (52%) than the rest of the genome (61.5%), suggesting that the TGC may have originated from a horizontal transfer event. Further analysis indicated numerous remnants of other potential horizontal transfer events are present in the genome. In addition to the TGC, genes potentially associated with carotenoid and exopolysaccharide production, bacteriocins and secondary metabolites were identified. A CRISPR array is evident. There were relatively few plant-associated cell-wall hydrolyzing enzymes, but there were numerous secreted serine proteases that share sequence homology to the pathogenicity-associated protein Pat-1 of Clavibacter michiganensis. Overall, the genome provides clear insight into the possible mechanisms for toxin production in R. toxicus, providing a basis for future genetic approaches.


July 7, 2019  |  

Complete genome sequence of the nematicidal Bacillus thuringiensis MYBT18246.

Bacillus thuringiensis is a rod-shaped facultative anaerobic spore forming bacterium of the genus Bacillus . The defining feature of the species is the ability to produce parasporal crystal inclusion bodies, consisting of d-endotoxins, encoded by cry-genes. Here we present the complete annotated genome sequence of the nematicidal B. thuringiensis strain MYBT18246. The genome comprises one 5,867,749 bp chromosome and 11 plasmids which vary in size from 6330 bp to 150,790 bp. The chromosome contains 6092 protein-coding and 150 RNA genes, including 36 rRNA genes. The plasmids encode 997 proteins and 4 t-RNA’s. Analysis of the genome revealed a large number of mobile elements involved in genome plasticity including 11 plasmids and 16 chromosomal prophages. Three different nematicidal toxin genes were identified and classified according to the Cry toxin naming committee as cry13Aa2, cry13Ba1, and cry13Ab1. Strikingly, these genes are located on the chromosome in close proximity to three separate prophages. Moreover, four putative toxin genes of different toxin classes were identified on the plasmids p120510 (Vip-like toxin), p120416 (Cry-like toxin) and p109822 (two Bin-like toxins). A comparative genome analysis of B. thuringiensis MYBT18246 with three closely related B. thuringiensis strains enabled determination of the pan-genome of B. thuringiensis MYBT18246, revealing a large number of singletons, mostly represented by phage genes, morons and cryptic genes.


July 7, 2019  |  

Complete genome sequence of a livestock-associated methicillin-resistant Staphylococcus aureus sequence type 5 isolate from the United States.

Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) may be the largest MRSA reservoir outside the hospital setting. One concern with LA-MRSA is the acquisition of novel mobile genetic elements by these isolates. Here, we report the complete genome sequence of a swine LA-MRSA sequence type 5 isolate from the United States.


July 7, 2019  |  

Complete genome sequence of livestock-associated methicillin-resistant Staphylococcus aureus sequence type 398 isolated from swine in the United States.

Methicillin-resistant Staphylococcus aureus (MRSA) colonizes and causes disease in many animal species. Livestock-associated MRSA (LA-MRSA) isolates are represented by isolates of the sequence type 398 (ST398). These isolates are considered to be livestock adapted. This report provides the complete genome sequence of one swine-associated LA-MRSA ST398 isolate from the United States.


July 7, 2019  |  

The Apostasia genome and the evolution of orchids.

Constituting approximately 10% of flowering plant species, orchids (Orchidaceae) display unique flower morphologies, possess an extraordinary diversity in lifestyle, and have successfully colonized almost every habitat on Earth. Here we report the draft genome sequence of Apostasia shenzhenica, a representative of one of two genera that form a sister lineage to the rest of the Orchidaceae, providing a reference for inferring the genome content and structure of the most recent common ancestor of all extant orchids and improving our understanding of their origins and evolution. In addition, we present transcriptome data for representatives of Vanilloideae, Cypripedioideae and Orchidoideae, and novel third-generation genome data for two species of Epidendroideae, covering all five orchid subfamilies. A. shenzhenica shows clear evidence of a whole-genome duplication, which is shared by all orchids and occurred shortly before their divergence. Comparisons between A. shenzhenica and other orchids and angiosperms also permitted the reconstruction of an ancestral orchid gene toolkit. We identify new gene families, gene family expansions and contractions, and changes within MADS-box gene classes, which control a diverse suite of developmental processes, during orchid evolution. This study sheds new light on the genetic mechanisms underpinning key orchid innovations, including the development of the labellum and gynostemium, pollinia, and seeds without endosperm, as well as the evolution of epiphytism; reveals relationships between the Orchidaceae subfamilies; and helps clarify the evolutionary history of orchids within the angiosperms.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.