Menu
July 7, 2019  |  

Draft genome sequence of a nitrate-reducing, o-phthalate degrading bacterium, Azoarcus sp. strain PA01(T).

Azoarcus sp. strain PA01(T) belongs to the genus Azoarcus, of the family Rhodocyclaceae within the class Betaproteobacteria. It is a facultatively anaerobic, mesophilic, non-motile, Gram-stain negative, non-spore-forming, short rod-shaped bacterium that was isolated from a wastewater treatment plant in Constance, Germany. It is of interest because of its ability to degrade o-phthalate and a wide variety of aromatic compounds with nitrate as an electron acceptor. Elucidation of the o-phthalate degradation pathway may help to improve the treatment of phthalate-containing wastes in the future. Here, we describe the features of this organism, together with the draft genome sequence information and annotation. The draft genome consists of 4 contigs with 3,908,301 bp and an overall G?+?C content of 66.08 %. Out of 3,712 total genes predicted, 3,625 genes code for proteins and 87 genes for RNAs. The majority of the protein-encoding genes (83.51 %) were assigned a putative function while those remaining were annotated as hypothetical proteins.


July 7, 2019  |  

Genome sequence and description of the anaerobic lignin-degrading bacterium Tolumonas lignolytica sp. nov.

Tolumonas lignolytica BRL6-1(T) sp. nov. is the type strain of T. lignolytica sp. nov., a proposed novel species of the Tolumonas genus. This strain was isolated from tropical rainforest soils based on its ability to utilize lignin as a sole carbon source. Cells of Tolumonas lignolytica BRL6-1(T) are mesophilic, non-spore forming, Gram-negative rods that are oxidase and catalase negative. The genome for this isolate was sequenced and returned in seven unique contigs totaling 3.6Mbp, enabling the characterization of several putative pathways for lignin breakdown. Particularly, we found an extracellular peroxidase involved in lignin depolymerization, as well as several enzymes involved in ß-aryl ether bond cleavage, which is the most abundant linkage between lignin monomers. We also found genes for enzymes involved in ferulic acid metabolism, which is a common product of lignin breakdown. By characterizing pathways and enzymes employed in the bacterial breakdown of lignin in anaerobic environments, this work should assist in the efficient engineering of biofuel production from lignocellulosic material.


July 7, 2019  |  

Complete genome sequence of the molybdenum-resistant bacterium Bacillus subtilis strain LM 4-2.

Bacillus subtilis LM 4-2, a Gram-positive bacterium was isolated from a molybdenum mine in Luoyang city. Due to its strong resistance to molybdate and potential utilization in bioremediation of molybdate-polluted area, we describe the features of this organism, as well as its complete genome sequence and annotation. The genome was composed of a circular 4,069,266 bp chromosome with average GC content of 43.83 %, which included 4149 predicted ORFs and 116 RNA genes. Additionally, 687 transporter-coding and 116 redox protein-coding genes were identified in the strain LM 4-2 genome.


July 7, 2019  |  

The effects of read length, quality and quantity on microsatellite discovery and primer development: from Illumina to PacBio.

The advent of next-generation sequencing (NGS) technologies has transformed the way microsatellites are isolated for ecological and evolutionary investigations. Recent attempts to employ NGS for microsatellite discovery have used the 454, Illumina, and Ion Torrent platforms, but other methods including single-molecule real-time DNA sequencing (Pacific Biosciences or PacBio) remain viable alternatives. We outline a workflow from sequence quality control to microsatellite marker validation in three plant species using PacBio circular consensus sequencing (CCS). We then evaluate the performance of PacBio CCS in comparison with other NGS platforms for microsatellite isolation, through simulations that focus on variations in read length, read quantity and sequencing error rate. Although quality control of CCS reads reduced microsatellite yield by around 50%, hundreds of microsatellite loci that are expected to have improved conversion efficiency to functional markers were retrieved for each species. The simulations quantitatively validate the advantages of long reads and emphasize the detrimental effects of sequencing errors on NGS-enabled microsatellite development. In view of the continuing improvement in read length on NGS platforms, sequence quality and the corresponding strategies of quality control will become the primary factors to consider for effective microsatellite isolation. Among current options, PacBio CCS may be optimal for rapid, small-scale microsatellite development due to its flexibility in scaling sequencing effort, while platforms such as Illumina MiSeq will provide cost-efficient solutions for multispecies microsatellite projects. © 2014 John Wiley & Sons Ltd.


July 7, 2019  |  

Compact genome of the Antarctic midge is likely an adaptation to an extreme environment.

The midge, Belgica antarctica, is the only insect endemic to Antarctica, and thus it offers a powerful model for probing responses to extreme temperatures, freeze tolerance, dehydration, osmotic stress, ultraviolet radiation and other forms of environmental stress. Here we present the first genome assembly of an extremophile, the first dipteran in the family Chironomidae, and the first Antarctic eukaryote to be sequenced. At 99 megabases, B. antarctica has the smallest insect genome sequenced thus far. Although it has a similar number of genes as other Diptera, the midge genome has very low repeat density and a reduction in intron length. Environmental extremes appear to constrain genome architecture, not gene content. The few transposable elements present are mainly ancient, inactive retroelements. An abundance of genes associated with development, regulation of metabolism and responses to external stimuli may reflect adaptations for surviving in this harsh environment.


July 7, 2019  |  

SSPACE-LongRead: scaffolding bacterial draft genomes using long read sequence information.

The recent introduction of the Pacific Biosciences RS single molecule sequencing technology has opened new doors to scaffolding genome assemblies in a cost-effective manner. The long read sequence information is promised to enhance the quality of incomplete and inaccurate draft assemblies constructed from Next Generation Sequencing (NGS) data.Here we propose a novel hybrid assembly methodology that aims to scaffold pre-assembled contigs in an iterative manner using PacBio RS long read information as a backbone. On a test set comprising six bacterial draft genomes, assembled using either a single Illumina MiSeq or Roche 454 library, we show that even a 50× coverage of uncorrected PacBio RS long reads is sufficient to drastically reduce the number of contigs. Comparisons to the AHA scaffolder indicate our strategy is better capable of producing (nearly) complete bacterial genomes.The current work describes our SSPACE-LongRead software which is designed to upgrade incomplete draft genomes using single molecule sequences. We conclude that the recent advances of the PacBio sequencing technology and chemistry, in combination with the limited computational resources required to run our program, allow to scaffold genomes in a fast and reliable manner.


July 7, 2019  |  

The odd one out: Bacillus ACT bacteriophage CP-51 exhibits unusual properties compared to related Spounavirinae W.Ph. and Bastille.

The Bacillus ACT group includes three important pathogenic species of Bacillus: anthracis, cereus and thuringiensis. We characterized three virulent bacteriophages, Bastille, W.Ph. and CP-51, that infect various strains of these three species. We have determined the complete genome sequences of CP-51, W.Ph. and Bastille, and their physical genome structures. The CP-51 genome sequence could only be obtained using a combination of conventional and second and third next generation sequencing technologies – illustrating the problems associated with sequencing highly modified DNA. We present evidence that the generalized transduction facilitated by CP-51 is independent of a specific genome structure, but likely due to sporadic packaging errors of the terminase. There is clear correlation of the genetic and morphological features of these phages validating their placement in the Spounavirinae subfamily (SPO1-related phages) of the Myoviridae. This study also provides tools for the development of phage-based diagnostics/therapeutics for this group of pathogens. Copyright © 2014 Elsevier Inc. All rights reserved.


July 7, 2019  |  

Next generation sequencing technologies and the changing landscape of phage genomics.

The dawn of next generation sequencing technologies has opened up exciting possibilities for whole genome sequencing of a plethora of organisms. The 2nd and 3rd generation sequencing technologies, based on cloning-free, massively parallel sequencing, have enabled the generation of a deluge of genomic sequences of both prokaryotic and eukaryotic origin in the last seven years. However, whole genome sequencing of bacterial viruses has not kept pace with this revolution, despite the fact that their genomes are orders of magnitude smaller in size compared with bacteria and other organisms. Sequencing phage genomes poses several challenges; (1) obtaining pure phage genomic material, (2) PCR amplification biases and (3) complex nature of their genetic material due to features such as methylated bases and repeats that are inherently difficult to sequence and assemble. Here we describe conclusions drawn from our efforts in sequencing hundreds of bacteriophage genomes from a variety of Gram-positive and Gram-negative bacteria using Sanger, 454, Illumina and PacBio technologies. Based on our experience we propose several general considerations regarding sample quality, the choice of technology and a “blended approach” for generating reliable whole genome sequences of phages.


July 7, 2019  |  

Absence of genome reduction in diverse, facultative endohyphal bacteria.

Fungi interact closely with bacteria, both on the surfaces of the hyphae and within their living tissues (i.e. endohyphal bacteria, EHB). These EHB can be obligate or facultative symbionts and can mediate diverse phenotypic traits in their hosts. Although EHB have been observed in many lineages of fungi, it remains unclear how widespread and general these associations are, and whether there are unifying ecological and genomic features can be found across EHB strains as a whole. We cultured 11 bacterial strains after they emerged from the hyphae of diverse Ascomycota that were isolated as foliar endophytes of cupressaceous trees, and generated nearly complete genome sequences for all. Unlike the genomes of largely obligate EHB, the genomes of these facultative EHB resembled those of closely related strains isolated from environmental sources. Although all analysed genomes encoded structures that could be used to interact with eukaryotic hosts, pathways previously implicated in maintenance and establishment of EHB symbiosis were not universally present across all strains. Independent isolation of two nearly identical pairs of strains from different classes of fungi, coupled with recent experimental evidence, suggests horizontal transfer of EHB across endophytic hosts. Given the potential for EHB to influence fungal phenotypes, these genomes could shed light on the mechanisms of plant growth promotion or stress mitigation by fungal endophytes during the symbiotic phase, as well as degradation of plant material during the saprotrophic phase. As such, these findings contribute to the illumination of a new dimension of functional biodiversity in fungi.


July 7, 2019  |  

Next-generation polyploid phylogenetics: rapid resolution of hybrid polyploid complexes using PacBio single-molecule sequencing.

Difficulties in generating nuclear data for polyploids have impeded phylogenetic study of these groups. We describe a high-throughput protocol and an associated bioinformatics pipeline (Pipeline for Untangling Reticulate Complexes (Purc)) that is able to generate these data quickly and conveniently, and demonstrate its efficacy on accessions from the fern family Cystopteridaceae. We conclude with a demonstration of the downstream utility of these data by inferring a multi-labeled species tree for a subset of our accessions. We amplified four c. 1-kb-long nuclear loci and sequenced them in a parallel-tagged amplicon sequencing approach using the PacBio platform. Purc infers the final sequences from the raw reads via an iterative approach that corrects PCR and sequencing errors and removes PCR-mediated recombinant sequences (chimeras). We generated data for all gene copies (homeologs, paralogs, and segregating alleles) present in each of three sets of 50 mostly polyploid accessions, for four loci, in three PacBio runs (one run per set). From the raw sequencing reads, Purc was able to accurately infer the underlying sequences. This approach makes it easy and economical to study the phylogenetics of polyploids, and, in conjunction with recent analytical advances, facilitates investigation of broad patterns of polyploid evolution.© 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.


July 7, 2019  |  

Organelle_PBA, a pipeline for assembling chloroplast and mitochondrial genomes from PacBio DNA sequencing data.

The development of long-read sequencing technologies, such as single-molecule real-time (SMRT) sequencing by PacBio, has produced a revolution in the sequencing of small genomes. Sequencing organelle genomes using PacBio long-read data is a cost effective, straightforward approach. Nevertheless, the availability of simple-to-use software to perform the assembly from raw reads is limited at present.We present Organelle-PBA, a Perl program designed specifically for the assembly of chloroplast and mitochondrial genomes. For chloroplast genomes, the program selects the chloroplast reads from a whole genome sequencing pool, maps the reads to a reference sequence from a closely related species, and then performs read correction and de novo assembly using Sprai. Organelle-PBA completes the assembly process with the additional step of scaffolding by SSPACE-LongRead. The program then detects the chloroplast inverted repeats and reassembles and re-orients the assembly based on the organelle origin of the reference. We have evaluated the performance of the software using PacBio reads from different species, read coverage, and reference genomes. Finally, we present the assembly of two novel chloroplast genomes from the species Picea glauca (Pinaceae) and Sinningia speciosa (Gesneriaceae).Organelle-PBA is an easy-to-use Perl-based software pipeline that was written specifically to assemble mitochondrial and chloroplast genomes from whole genome PacBio reads. The program is available at https://github.com/aubombarely/Organelle_PBA .


July 7, 2019  |  

Resequencing and annotation of the Nostoc punctiforme ATTC 29133 genome: facilitating biofuel and high-value chemical production.

Cyanobacteria have the potential to produce bulk and fine chemicals and members belonging to Nostoc sp. have received particular attention due to their relatively fast growth rate and the relative ease with which they can be harvested. Nostoc punctiforme is an aerobic, motile, Gram-negative, filamentous cyanobacterium that has been studied intensively to enhance our understanding of microbial carbon and nitrogen fixation. The genome of the type strain N. punctiforme ATCC 29133 was sequenced in 2001 and the scientific community has used these genome data extensively since then. Advances in bioinformatics tools for sequence annotation and the importance of this organism prompted us to resequence and reanalyze its genome and to make both, the initial and improved annotation, available to the scientific community. The new draft genome has a total size of 9.1 Mbp and consists of 65 contiguous pieces of DNA with a GC content of 41.38% and 7664 protein-coding genes. Furthermore, the resequenced genome is slightly (5152 bp) larger and contains 987 more genes with functional prediction when compared to the previously published version. We deposited the annotation of both genomes in the Department of Energy’s IMG database to facilitate easy genome exploration by the scientific community without the need of in-depth bioinformatics skills. We expect that an facilitated access and ability to search the N. punctiforme ATCC 29133 for genes of interest will significantly facilitate metabolic engineering and genome prospecting efforts and ultimately the synthesis of biofuels and natural products from this keystone organism and closely related cyanobacteria.


July 7, 2019  |  

Genome sequence of Streptomyces sp. H-KF8, a marine actinobacterium isolated from a northern Chilean Patagonian fjord.

Streptomyces sp. H-KF8 is a fjord-derived marine actinobacterium capable of producing antimicrobial activity. Streptomyces sp. H-KF8 was isolated from sediments of the Comau fjord, located in the northern Chilean Patagonia. Here, we report the 7.7-Mb genome assembly, which represents the first genome of a Chilean marine actinobacterium. Copyright © 2017 Undabarrena et al.


July 7, 2019  |  

De novo genome and transcriptome assembly of the Canadian beaver (Castor canadensis).

The Canadian beaver (Castor canadensis) is the largest indigenous rodent in North America. We report a draft annotated assembly of the beaver genome, the first for a large rodent and the first mammalian genome assembled directly from uncorrected and moderate coverage (< 30 ×) long reads generated by single-molecule sequencing. The genome size is 2.7 Gb estimated by k-mer analysis. We assembled the beaver genome using the new Canu assembler optimized for noisy reads. The resulting assembly was refined using Pilon supported by short reads (80 ×) and checked for accuracy by congruency against an independent short read assembly. We scaffolded the assembly using the exon-gene models derived from 9805 full-length open reading frames (FL-ORFs) constructed from the beaver leukocyte and muscle transcriptomes. The final assembly comprised 22,515 contigs with an N50 of 278,680 bp and an N50-scaffold of 317,558 bp. Maximum contig and scaffold lengths were 3.3 and 4.2 Mb, respectively, with a combined scaffold length representing 92% of the estimated genome size. The completeness and accuracy of the scaffold assembly was demonstrated by the precise exon placement for 91.1% of the 9805 assembled FL-ORFs and 83.1% of the BUSCO (Benchmarking Universal Single-Copy Orthologs) gene set used to assess the quality of genome assemblies. Well-represented were genes involved in dentition and enamel deposition, defining characteristics of rodents with which the beaver is well-endowed. The study provides insights for genome assembly and an important genomics resource for Castoridae and rodent evolutionary biology. Copyright © 2017 Lok et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.