X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Closed complete genome sequences of two nontypeable Haemophilus influenzae strains containing novel modA alleles from the sputum of patients with chronic obstructive pulmonary disease.

Nontypeable Haemophilus influenzae (NTHi) is an important bacterial pathogen that causes otitis media and exacerbations of chronic obstructive pulmonary disease (COPD). Here, we report the complete genome sequences of NTHi strains 10P129H1 and 84P36H1, isolated from COPD patients, which contain the phase-variable epigenetic regulators ModA15 and ModA18, respectively.

Read More »

Sunday, July 7, 2019

Complete genome sequence of the multidrug-resistant neonatal meningitis Escherichia coli serotype O75:H5:K1 strain mcjchv-1 (NMEC-O75).

Neonatal meningitis Escherichia coli (NMEC) is the second leading cause of neonatal bacterial meningitis worldwide. We report the genome sequence of the multidrug-resistant NMEC serotype O75:H5:K1 strain mcjchv-1, which resulted in an infant’s death. The O75 serogroup is rare among NMEC isolates; therefore, this strain is considered an emergent pathogen.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Salmonella enterica subsp. enterica serotype Derby, associated with the pork sector in France.

In the European Union, Salmonella enterica subsp. enterica serovar Derby is the most abundant serotype isolated from pork. Recent studies have shown that this serotype is polyphyletic. However, one main genomic lineage, characterized by sequence type 40 (ST40), the presence of the Salmonella pathogenicity island 23, and showing resistance to streptomycin, sulphonamides, and tetracycline (STR-SSS- TET), is pork associated. Here, we describe the complete genome sequence of a strain from this lineage isolated in France.

Read More »

Sunday, July 7, 2019

Complete genome sequence of herpes simplex virus 2 strain 333.

Herpes simplex virus 2, or human herpesvirus 2, is a ubiquitous human pathogen that causes genital ulcerations and establishes latency in sacral root ganglia. We fully sequenced and manually curated the viral genome sequence of herpes simplex virus 2, strain 333 using Pacific Biosciences and Illumina sequencing technologies.

Read More »

Sunday, July 7, 2019

Mitochondrial genomes of two diplectanids (Platyhelminthes: Monogenea) expose paraphyly of the order Dactylogyridea and extensive tRNA gene rearrangements.

Recent mitochondrial phylogenomics studies have reported a sister-group relationship of the orders Capsalidea and Dactylogyridea, which is inconsistent with previous morphology- and molecular-based phylogenies. As Dactylogyridea mitochondrial genomes (mitogenomes) are currently represented by only one family, to improve the phylogenetic resolution, we sequenced and characterized two dactylogyridean parasites, Lamellodiscus spari and Lepidotrema longipenis, belonging to a non-represented family Diplectanidae.The L. longipenis mitogenome (15,433 bp) contains the standard 36 flatworm mitochondrial genes (atp8 is absent), whereas we failed to detect trnS1, trnC and trnG in L. spari (14,614 bp). Both mitogenomes exhibit unique gene orders (among the Monogenea), with a number…

Read More »

Sunday, July 7, 2019

An investigation of Y chromosome incorporations in 400 species of Drosophila and related genera.

Y chromosomes are widely believed to evolve from a normal autosome through a process of massive gene loss (with preservation of some male genes), shaped by sex-antagonistic selection and complemented by occasional gains of male-related genes. The net result of these processes is a male-specialized chromosome. This might be expected to be an irreversible process, but it was found in 2005 that the Drosophila pseudoobscura Y chromosome was incorporated into an autosome. Y chromosome incorporations have important consequences: a formerly male-restricted chromosome reverts to autosomal inheritance, and the species may shift from an XY/XX to X0/XX sex-chromosome system. In order…

Read More »

Sunday, July 7, 2019

Complete genome sequence of Streptacidiphilus sp. strain 15-057A, obtained from bronchial lavage fluid.

Streptacidiphilus sp. strain 15-057A was isolated from a bronchial lavage sample and represents the only member of the genus not isolated from acidic soils. A single circular chromosome of 7.01?Mb was obtained by combining Illumina and PacBio sequencing data. Bioinformatic analysis detected 63 putative secondary biosynthetic gene clusters and recognized 43 transposons.

Read More »

Sunday, July 7, 2019

De novo genome assembly of the olive fruit fly (Bactrocera oleae) developed through a combination of linked-reads and long-read technologies

Long-read sequencing has greatly contributed to the generation of high quality assemblies, albeit at a high cost. It is also not always clear how to combine sequencing platforms. We sequenced the genome of the olive fruit fly (Bactrocera oleae), the most important pest in the olive fruits agribusiness industry, using Illumina short-reads, mate-pairs, 10x Genomics linked-reads, Pacific Biosciences (PacBio), and Oxford Nanopore Technologies (ONT). The 10x linked-reads assembly gave the most contiguous assembly with an N50 of 2.16 Mb. Scaffolding the linked-reads assembly using long-reads from ONT gave a more contiguous assembly with scaffold N50 of 4.59 Mb. We also…

Read More »

1 9 10 11

Subscribe for blog updates:

Archives