June 1, 2021  |  

De novo assembly of a complex panicoid grass genome using ultra-long PacBio reads with P6C4 chemistry

Drought is responsible for much of the global losses in crop yields and understanding how plants naturally cope with drought stress is essential for breeding and engineering crops for the changing climate. Resurrection plants desiccate to complete dryness during times of drought, then “come back to life” once water is available making them an excellent model for studying drought tolerance. Understanding the molecular networks governing how resurrection plants handle desiccation will provide targets for crop engineering. Oropetium thomaeum (Oro) is a resurrection plant that also has the smallest known grass genome at 250 Mb compared to Brachypodium distachyon (300 Mb) and rice (350 Mb). Plant genomes, especially grasses, have complex repeat structures such as telomeres, centromeres, and ribosomal gene cassettes, and high heterozygosity, which makes them difficult to assembly using short read next generation sequencing technologies. Ultra-long PacBio reads using the new P6C4 chemistry and the latest 15kb Blue Pippin size-selection protocol to generate 20kb insert libraries that yielded an average read length of 12kb providing ~72X coverage, and 10X coverage with reads over 20kb. The HGAP assembly covers 98% of the genome with a contig N50 of 2.4 Mb, which makes it one of the highest quality and most complete plant genomes assembled to date. Oro has a compact genome structure compared to other grasses with only 16% repeat sequences but has very good collinearity with other grasses. Understanding the genomic mechanisms of extreme desiccation tolerance in resurrection plants like Oro will provide insights for engineering and intelligent breeding of improved food, fuel, and fiber crops.

June 1, 2021  |  

From Sequencing to Chromosomes: New de novo assembly and scaffolding methods improve the goat reference genome

Single-molecule sequencing is now routinely used to assemble complete, high-quality microbial genomes, but these assembly methods have not scaled well to large genomes. To address this problem, we previously introduced the MinHash Alignment Process (MHAP) for overlapping single-molecule reads using probabilistic, locality-sensitive hashing. Integrating MHAP with Celera Assembler (CA) has enabled reference-grade assemblies of model organisms, revealing novel heterochromatic sequences and filling low-complexity gap sequences in the GRCh38 human reference genome. We have applied our methods to assemble the San Clemente goat genome. Combining single-molecule sequencing from Pacific Biosciences and BioNano Genomics generates and assembly that is over 150-fold more contiguous than the latest Capra hircus reference. In combination with Hi-C sequencing, the assembly surpasses reference assemblies, de novo, with minimal manual intervention. The autosomes are each assembled into a single scaffold. Our assembly provides a more complete gene reconstruction, better alignments with Goat 52k chip, and improved allosome reconstruction. In addition to providing increased continuity of sequence, our assembly achieves a higher BUSCO completion score (84%) than the existing goat reference assembly suggesting better quality annotation of gene models. Our results demonstrate that single-molecule sequencing can produce near-complete eukaryotic genomes at modest cost and minimal manual effort.

June 1, 2021  |  

Full-length cDNA sequencing of prokaryotic transcriptome and metatranscriptome samples

Next-generation sequencing has become a useful tool for studying transcriptomes. However, these methods typically rely on sequencing short fragments of cDNA, then attempting to assemble the pieces into full-length transcripts. Here, we describe a method that uses PacBio long reads to sequence full-length cDNAs from individual transcriptomes and metatranscriptome samples. We have adapted the PacBio Iso-Seq protocol for use with prokaryotic samples by incorporating RNA polyadenylation and rRNA-depletion steps. In conjunction with SMRT Sequencing, which has average readlengths of 10-15 kb, we are able to sequence entire transcripts, including polycistronic RNAs, in a single read. Here, we show full-length bacterial transcriptomes with the ability to visualize transcription of operons. In the area of metatranscriptomics, long reads reveal unambiguous gene sequences without the need for post-sequencing transcript assembly. We also show full-length bacterial transcripts sequenced after being treated with NEB’s Cappable-Seq, which is an alternative method for depleting rRNA and enriching for full-length transcripts with intact 5’ ends. Combining Cappable-Seq with PacBio long reads allows for the detection of transcription start sites, with the additional benefit of sequencing entire transcripts.

October 23, 2019  |  

CRISPR/Cas9-mediated scanning for regulatory elements required for HPRT1 expression via thousands of large, programmed genomic deletions.

The extent to which non-coding mutations contribute to Mendelian disease is a major unknown in human genetics. Relatedly, the vast majority of candidate regulatory elements have yet to be functionally validated. Here, we describe a CRISPR-based system that uses pairs of guide RNAs (gRNAs) to program thousands of kilobase-scale deletions that deeply scan across a targeted region in a tiling fashion (“ScanDel”). We applied ScanDel to HPRT1, the housekeeping gene underlying Lesch-Nyhan syndrome, an X-linked recessive disorder. Altogether, we programmed 4,342 overlapping 1 and 2 kb deletions that tiled 206 kb centered on HPRT1 (including 87 kb upstream and 79 kb downstream) with median 27-fold redundancy per base. We functionally assayed programmed deletions in parallel by selecting for loss of HPRT function with 6-thioguanine. As expected, sequencing gRNA pairs before and after selection confirmed that all HPRT1 exons are needed. However, HPRT1 function was robust to deletion of any intergenic or deeply intronic non-coding region, indicating that proximal regulatory sequences are sufficient for HPRT1 expression. Although our screen did identify the disruption of exon-proximal non-coding sequences (e.g., the promoter) as functionally consequential, long-read sequencing revealed that this signal was driven by rare, imprecise deletions that extended into exons. Our results suggest that no singular distal regulatory element is required for HPRT1 expression and that distal mutations are unlikely to contribute substantially to Lesch-Nyhan syndrome burden. Further application of ScanDel could shed light on the role of regulatory mutations in disease at other loci while also facilitating a deeper understanding of endogenous gene regulation. Copyright © 2017 American Society of Human Genetics. All rights reserved.

September 22, 2019  |  

A global survey of alternative splicing in allopolyploid cotton: landscape, complexity and regulation.

Alternative splicing (AS) is a crucial regulatory mechanism in eukaryotes, which acts by greatly increasing transcriptome diversity. The extent and complexity of AS has been revealed in model plants using high-throughput next-generation sequencing. However, this technique is less effective in accurately identifying transcript isoforms in polyploid species because of the high sequence similarity between coexisting subgenomes. Here we characterize AS in the polyploid species cotton. Using Pacific Biosciences single-molecule long-read isoform sequencing (Iso-Seq), we developed an integrated pipeline for Iso-Seq transcriptome data analysis (https://github.com/Nextomics/pipeline-for-isoseq). We identified 176 849 full-length transcript isoforms from 44 968 gene models and updated gene annotation. These data led us to identify 15 102 fibre-specific AS events and estimate that c. 51.4% of homoeologous genes produce divergent isoforms in each subgenome. We reveal that AS allows differential regulation of the same gene by miRNAs at the isoform level. We also show that nucleosome occupancy and DNA methylation play a role in defining exons at the chromatin level. This study provides new insights into the complexity and regulation of AS, and will enhance our understanding of AS in polyploid species. Our methodology for Iso-Seq data analysis will be a useful reference for the study of AS in other species.© 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

September 22, 2019  |  

16S rRNA long-read sequencing of the granulation tissue from nonsmokers and smokers-severe chronic periodontitis patients

Smoking has been associated with increased risk of periodontitis. The aim of the present study was to compare the periodontal disease severity among smokers and nonsmokers which may help in better understanding of predisposition to this chronic inflammation mediated diseases. We selected deep-seated infected granulation tissue removed during periodontal flap surgery procedures for identification and differential abundance of residential bacterial species among smokers and nonsmokers through long-read sequencing technology targeting full-length 16S rRNA gene. A total of 8 phyla were identified among which Firmicutes and Bacteroidetes were most dominating. Differential abundance analysis of OTUs through PICRUST showed significant (p>0.05) abundance of Phyla-Fusobacteria (Streptobacillus moniliformis); Phyla-Firmicutes (Streptococcus equi), and Phyla Proteobacteria (Enhydrobacter aerosaccus) in nonsmokers compared to smokers. The differential abundance of oral metagenomes in smokers showed significant enrichment of host genes modulating pathways involving primary immunodeficiency, citrate cycle, streptomycin biosynthesis, vitamin B6 metabolism, butanoate metabolism, glycine, serine, and threonine metabolism pathways. While thiamine metabolism, amino acid metabolism, homologous recombination, epithelial cell signaling, aminoacyl-tRNA biosynthesis, phosphonate/phosphinate metabolism, polycyclic aromatic hydrocarbon degradation, synthesis and degradation of ketone bodies, translation factors, Ascorbate and aldarate metabolism, and DNA replication pathways were significantly enriched in nonsmokers, modulation of these pathways in oral cavities due to differential enrichment of metagenomes in smokers may lead to an increased susceptibility to infections and/or higher formation of DNA adducts, which may increase the risk of carcinogenesis.

September 22, 2019  |  

Uncovering full-length transcript isoforms of sugarcane cultivar Khon Kaen 3 using single-molecule long-read sequencing.

Sugarcane is an important global food crop and energy resource. To facilitate the sugarcane improvement program, genome and gene information are important for studying traits at the molecular level. Most currently available transcriptome data for sugarcane were generated using second-generation sequencing platforms, which provide short reads. The de novo assembled transcripts from these data are limited in length, and hence may be incomplete and inaccurate, especially for long RNAs.We generated a transcriptome dataset of leaf tissue from a commercial Thai sugarcane cultivar Khon Kaen 3 (KK3) using PacBio RS II single-molecule long-read sequencing by the Iso-Seq method. Short-read RNA-Seq data were generated from the same RNA sample using the Ion Proton platform for reducing base calling errors.A total of 119,339 error-corrected transcripts were generated with the N50 length of 3,611 bp, which is on average longer than any previously reported sugarcane transcriptome dataset. 110,253 sequences (92.4%) contain an open reading frame (ORF) of at least 300 bp long with ORF N50 of 1,416 bp. The mean lengths of 5′ and 3′ untranslated regions in 73,795 sequences with complete ORFs are 1,249 and 1,187 bp, respectively. 4,774 transcripts are putatively novel full-length transcripts which do not match with a previous Iso-Seq study of sugarcane. We annotated the functions of 68,962 putative full-length transcripts with at least 90% coverage when compared with homologous protein coding sequences in other plants.The new catalog of transcripts will be useful for genome annotation, identification of splicing variants, SNP identification, and other research pertaining to the sugarcane improvement program. The putatively novel transcripts suggest unique features of KK3, although more data from different tissues and stages of development are needed to establish a reference transcriptome of this cultivar.

September 22, 2019  |  

Isoform sequencing and state-of-art applications for unravelling complexity of plant transcriptomes

Single-molecule real-time (SMRT) sequencing developed by PacBio, also called third-generation sequencing (TGS), offers longer reads than the second-generation sequencing (SGS). Given its ability to obtain full-length transcripts without assembly, isoform sequencing (Iso-Seq) of transcriptomes by PacBio is advantageous for genome annotation, identification of novel genes and isoforms, as well as the discovery of long non-coding RNA (lncRNA). In addition, Iso-Seq gives access to the direct detection of alternative splicing, alternative polyadenylation (APA), gene fusion, and DNA modifications. Such applications of Iso-Seq facilitate the understanding of gene structure, post-transcriptional regulatory networks, and subsequently proteomic diversity. In this review, we summarize its applications in plant transcriptome study, specifically pointing out challenges associated with each step in the experimental design and highlight the development of bioinformatic pipelines. We aim to provide the community with an integrative overview and a comprehensive guidance to Iso-Seq, and thus to promote its applications in plant research.

September 22, 2019  |  

Complex rearrangements and oncogene amplifications revealed by long-read DNA and RNA sequencing of a breast cancer cell line.

The SK-BR-3 cell line is one of the most important models for HER2+ breast cancers, which affect one in five breast cancer patients. SK-BR-3 is known to be highly rearranged, although much of the variation is in complex and repetitive regions that may be underreported. Addressing this, we sequenced SK-BR-3 using long-read single molecule sequencing from Pacific Biosciences and develop one of the most detailed maps of structural variations (SVs) in a cancer genome available, with nearly 20,000 variants present, most of which were missed by short-read sequencing. Surrounding the important ERBB2 oncogene (also known as HER2), we discover a complex sequence of nested duplications and translocations, suggesting a punctuated progression. Full-length transcriptome sequencing further revealed several novel gene fusions within the nested genomic variants. Combining long-read genome and transcriptome sequencing enables an in-depth analysis of how SVs disrupt the genome and sheds new light on the complex mechanisms involved in cancer genome evolution.© 2018 Nattestad et al.; Published by Cold Spring Harbor Laboratory Press.

September 22, 2019  |  

A survey of the sorghum transcriptome using single-molecule long reads.

Alternative splicing and alternative polyadenylation (APA) of pre-mRNAs greatly contribute to transcriptome diversity, coding capacity of a genome and gene regulatory mechanisms in eukaryotes. Second-generation sequencing technologies have been extensively used to analyse transcriptomes. However, a major limitation of short-read data is that it is difficult to accurately predict full-length splice isoforms. Here we sequenced the sorghum transcriptome using Pacific Biosciences single-molecule real-time long-read isoform sequencing and developed a pipeline called TAPIS (Transcriptome Analysis Pipeline for Isoform Sequencing) to identify full-length splice isoforms and APA sites. Our analysis reveals transcriptome-wide full-length isoforms at an unprecedented scale with over 11,000 novel splice isoforms. Additionally, we uncover APA of ~11,000 expressed genes and more than 2,100 novel genes. These results greatly enhance sorghum gene annotations and aid in studying gene regulation in this important bioenergy crop. The TAPIS pipeline will serve as a useful tool to analyse Iso-Seq data from any organism.

September 22, 2019  |  

Assessment of an organ-specific de novo transcriptome of the nematode trap-crop, Solanum sisymbriifolium

Solanum sisymbriifolium, also known as “Litchi Tomato” or “Sticky Nightshade,” is an undomesticated and poorly researched plant related to potato and tomato. Unlike the latter species, S. sisymbriifolium induces eggs of the cyst nematode, Globodera pallida, to hatch and migrate into its roots, but then arrests further nematode maturation. In order to provide researchers with a partial blueprint of its genetic make-up so that the mechanism of this response might be identified, we used single molecule real time (SMRT) sequencing to compile a high quality de novo transcriptome of 41,189 unigenes drawn from individually sequenced bud, root, stem, and leaf RNA populations. Functional annotation and BUSCO analysis showed that this transcriptome was surprisingly complete, even though it represented genes expressed at a single time point. By sequencing the 4 organ libraries separately, we found we could get a reliable snapshot of transcript distributions in each organ. A divergent site analysis of the merged transcriptome indicated that this species might have undergone a recent genome duplication and re-diploidization. Further analysis indicated that the plant then retained a disproportionate number of genes associated with photosynthesis and amino acid metabolism in comparison to genes with characteristics of R-proteins or involved in secondary metabolism. The former processes may have given S. sisymbriifolium a bigger competitive advantage than the latter did. Copyright © 2018 Wixom et al.

September 22, 2019  |  

Extreme haplotype variation in the desiccation-tolerant clubmoss Selaginella lepidophylla.

Plant genome size varies by four orders of magnitude, and most of this variation stems from dynamic changes in repetitive DNA content. Here we report the small 109?Mb genome of Selaginella lepidophylla, a clubmoss with extreme desiccation tolerance. Single-molecule sequencing enables accurate haplotype assembly of a single heterozygous S. lepidophylla plant, revealing extensive structural variation. We observe numerous haplotype-specific deletions consisting of largely repetitive and heavily methylated sequences, with enrichment in young Gypsy LTR retrotransposons. Such elements are active but rapidly deleted, suggesting “bloat and purge” to maintain a small genome size. Unlike all other land plant lineages, Selaginella has no evidence of a whole-genome duplication event in its evolutionary history, but instead shows unique tandem gene duplication patterns reflecting adaptation to extreme drying. Gene expression changes during desiccation in S. lepidophylla mirror patterns observed across angiosperm resurrection plants.

September 22, 2019  |  

Characterization of the SN35N strain-specific exopolysaccharide encoded in the whole circular genome of a plant-derived Lactobacillus plantarum.

Lactobacillus plantarum SN35N, which has been previously isolated from pear, secretes exopolysaccharide (EPS). The aim of the present study is to characterize the EPS chemically and to find the EPS-biosynthesizing gene cluster. The present study demonstrates that the strain produces an acidic EPS carrying phosphate residue, which is composed of glucose, galactose, and mannose at a molecular ratio of 15.0?:?5.7?:?1.0. We also show that acidic EPS strongly inhibits the catalytic activity of hyaluronidase (EC, promoting an inflammatory reaction. In the present study, we also determined the complete genome sequence of the SN35N strain, demonstrating that the genome is a circular DNA with 3267626?bp, and the number of predicted coding genes is 3146, with a GC content of 44.51%. In addition, the strain harbors four plasmids, designated pSN35N-1, -2, -3, and -4. Although four EPS-biosynthesizing genes, designated lpe1, lpe2, lpe3, and lpe4, are present in the SN35N chromosomal DNA, another EPS gene cluster, lpe5, is located in the pSN35N-3 plasmid, composed of 35425?bp. EPS low-producing mutants, which were obtained by treating SN35N cells with novobiocin, lost the lpe5 gene cluster in the plasmid-curing experiment, suggesting that the gene cluster for the biosynthesis of acidic EPS is present in the plasmid. The present study shows the chemical characterization of the acidic EPS and its inhibitory effect to the hyaluronidase.

September 22, 2019  |  

Analysis of the Aedes albopictus C6/36 genome provides insight into cell line utility for viral propagation.

The 50-year-old Aedes albopictus C6/36 cell line is a resource for the detection, amplification, and analysis of mosquito-borne viruses including Zika, dengue, and chikungunya. The cell line is derived from an unknown number of larvae from an unspecified strain of Aedes albopictus mosquitoes. Toward improved utility of the cell line for research in virus transmission, we present an annotated assembly of the C6/36 genome.The C6/36 genome assembly has the largest contig N50 (3.3 Mbp) of any mosquito assembly, presents the sequences of both haplotypes for most of the diploid genome, reveals independent null mutations in both alleles of the Dicer locus, and indicates a male-specific genome. Gene annotation was computed with publicly available mosquito transcript sequences. Gene expression data from cell line RNA sequence identified enrichment of growth-related pathways and conspicuous deficiency in aquaporins and inward rectifier K+ channels. As a test of utility, RNA sequence data from Zika-infected cells were mapped to the C6/36 genome and transcriptome assemblies. Host subtraction reduced the data set by 89%, enabling faster characterization of nonhost reads.The C6/36 genome sequence and annotation should enable additional uses of the cell line to study arbovirus vector interactions and interventions aimed at restricting the spread of human disease.

September 22, 2019  |  

Comparative genome analysis reveals a complex population structure of Legionella pneumophila subspecies.

The majority of Legionnaires’ disease (LD) cases are caused by Legionella pneumophila, a genetically heterogeneous species composed of at least 17 serogroups. Previously, it was demonstrated that L. pneumophila consists of three subspecies: pneumophila, fraseri and pascullei. During an LD outbreak investigation in 2012, we detected that representatives of both subspecies fraseri and pascullei colonized the same water system and that the outbreak-causing strain was a new member of the least represented subspecies pascullei. We used partial sequence based typing consensus patterns to mine an international database for additional representatives of fraseri and pascullei subspecies. As a result, we identified 46 sequence types (STs) belonging to subspecies fraseri and two STs belonging to subspecies pascullei. Moreover, a recent retrospective whole genome sequencing analysis of isolates from New York State LD clusters revealed the presence of a fourth L. pneumophila subspecies that we have termed raphaeli. This subspecies consists of 15 STs. Comparative analysis was conducted using the genomes of multiple members of all four L. pneumophila subspecies. Whereas each subspecies forms a distinct phylogenetic clade within the L. pneumophila species, they share more average nucleotide identity with each other than with other Legionella species. Unique genes for each subspecies were identified and could be used for rapid subspecies detection. Improved taxonomic classification of L. pneumophila strains may help identify environmental niches and virulence attributes associated with these genetically distinct subspecies. Published by Elsevier B.V.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.