X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, April 21, 2020

Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution.

We present reference-quality genome assembly and annotation for the stout camphor tree (Cinnamomum kanehirae (Laurales, Lauraceae)), the first sequenced member of the Magnoliidae comprising four orders (Laurales, Magnoliales, Canellales and Piperales) and over 9,000 species. Phylogenomic analysis of 13 representative seed plant genomes indicates that magnoliid and eudicot lineages share more recent common ancestry than monocots. Two whole-genome duplication events were inferred within the magnoliid lineage: one before divergence of Laurales and Magnoliales and the other within the Lauraceae. Small-scale segmental duplications and tandem duplications also contributed to innovation in the evolutionary history of Cinnamomum. For example, expansion of the…

Read More »

Tuesday, April 21, 2020

RADAR-seq: A RAre DAmage and Repair sequencing method for detecting DNA damage on a genome-wide scale.

RAre DAmage and Repair sequencing (RADAR-seq) is a highly adaptable sequencing method that enables the identification and detection of rare DNA damage events for a wide variety of DNA lesions at single-molecule resolution on a genome-wide scale. In RADAR-seq, DNA lesions are replaced with a patch of modified bases that can be directly detected by Pacific Biosciences Single Molecule Real-Time (SMRT) sequencing. RADAR-seq enables dynamic detection over a wide range of DNA damage frequencies, including low physiological levels. Furthermore, without the need for DNA amplification and enrichment steps, RADAR-seq provides sequencing coverage of damaged and undamaged DNA across an entire…

Read More »

Tuesday, April 21, 2020

SMRT sequencing reveals differential patterns of methylation in two O111:H- STEC isolates from a hemolytic uremic syndrome outbreak in Australia.

In 1995 a severe haemolytic-uremic syndrome (HUS) outbreak in Adelaide occurred. A recent genomic analysis of Shiga toxigenic Escherichia coli (STEC) O111:H- strains 95JB1 and 95NR1 from this outbreak found that the more virulent isolate, 95NR1, harboured two additional copies of the Shiga toxin 2 (Stx2) genes encoded within prophage regions. The structure of the Stx2-converting prophages could not be fully resolved using short-read sequence data alone and it was not clear if there were other genomic differences between 95JB1 and 95NR1. In this study we have used Pacific Biosciences (PacBio) single molecule real-time (SMRT) sequencing to characterise the genome…

Read More »

Wednesday, February 26, 2020

SMRT Sequencing of DNA and RNA samples extracted from formalin-fixed and paraffin embedded tissues using adaptive focused acoustics by Covaris.

Recent advances in next-generation sequencing have led to an increased use of formalin-fixed and paraffin-embedded (FFPE) tissues for medical samples in disease and scientific research. Single Molecule, Real-Time (SMRT) Sequencing offers a unique advantage for direct analysis of FFPE samples without amplification. However, obtaining ample long-read information from FFPE samples has been a challenge due to the quality and quantity of the extracted DNA. FFPE samples often contain damaged sites, including breaks in the backbone and missing or altered nucleotide bases, which directly impact sequencing and target enrichment. Additionally, the quality and quantity of the recovered DNA vary depending on…

Read More »

Sunday, September 22, 2019

Improved full-length killer cell immunoglobulin-like receptor transcript discovery in Mauritian cynomolgus macaques.

Killer cell immunoglobulin-like receptors (KIRs) modulate disease progression of pathogens including HIV, malaria, and hepatitis C. Cynomolgus and rhesus macaques are widely used as nonhuman primate models to study human pathogens, and so, considerable effort has been put into characterizing their KIR genetics. However, previous studies have relied on cDNA cloning and Sanger sequencing that lack the throughput of current sequencing platforms. In this study, we present a high throughput, full-length allele discovery method utilizing Pacific Biosciences circular consensus sequencing (CCS). We also describe a new approach to Macaque Exome Sequencing (MES) and the development of the Rhexome1.0, an adapted…

Read More »

Sunday, September 22, 2019

Characterization of the SN35N strain-specific exopolysaccharide encoded in the whole circular genome of a plant-derived Lactobacillus plantarum.

Lactobacillus plantarum SN35N, which has been previously isolated from pear, secretes exopolysaccharide (EPS). The aim of the present study is to characterize the EPS chemically and to find the EPS-biosynthesizing gene cluster. The present study demonstrates that the strain produces an acidic EPS carrying phosphate residue, which is composed of glucose, galactose, and mannose at a molecular ratio of 15.0?:?5.7?:?1.0. We also show that acidic EPS strongly inhibits the catalytic activity of hyaluronidase (EC 3.2.1.35), promoting an inflammatory reaction. In the present study, we also determined the complete genome sequence of the SN35N strain, demonstrating that the genome is a…

Read More »

Sunday, September 22, 2019

Loss of stomach, loss of appetite? Sequencing of the ballan wrasse (Labrus bergylta) genome and intestinal transcriptomic profiling illuminate the evolution of loss of stomach function in fish.

The ballan wrasse (Labrus bergylta) belongs to a large teleost family containing more than 600 species showing several unique evolutionary traits such as lack of stomach and hermaphroditism. Agastric fish are found throughout the teleost phylogeny, in quite diverse and unrelated lineages, indicating stomach loss has occurred independently multiple times in the course of evolution. By assembling the ballan wrasse genome and transcriptome we aimed to determine the genetic basis for its digestive system function and appetite regulation. Among other, this knowledge will aid the formulation of aquaculture diets that meet the nutritional needs of agastric species.Long and short read…

Read More »

Sunday, September 22, 2019

Antibiotic resistance plasmids cointegrated into a megaplasmid harboring the blaOXA-427 carbapenemase gene.

OXA-427 is a new class D carbapenemase encountered in different species of Enterobacteriaceae in a Belgian hospital. To study the dispersal of this gene, we performed a comparative analysis of two plasmids containing the blaOXA-427 gene, isolated from a Klebsiella pneumoniae strain and an Enterobacter cloacae complex strain. The two IncA/C2 plasmids containing blaOXA-427 share the same backbone; in the K. pneumoniae strain, however, this plasmid is cointegrated into an IncFIb plasmid, forming a 321-kb megaplasmid with multiple multiresistance regions. Copyright © 2018 American Society for Microbiology.

Read More »

Sunday, September 22, 2019

Heterogeneous and flexible transmission of mcr-1 in hospital-associated Escherichia coli.

The recent emergence of a transferable colistin resistance mechanism, MCR-1, has gained global attention because of its threat to clinical treatment of infections caused by multidrug-resistant Gram-negative bacteria. However, the possible transmission route of mcr-1 among Enterobacteriaceae species in clinical settings is largely unknown. Here, we present a comprehensive genomic analysis of Escherichia coli isolates collected in a hospital in Hangzhou, China. We found that mcr-1-carrying isolates from clinical infections and feces of inpatients and healthy volunteers were genetically diverse and were not closely related phylogenetically, suggesting that clonal expansion is not involved in the spread of mcr-1 The mcr-1…

Read More »

Sunday, September 22, 2019

A gene-rich fraction analysis of the Passiflora edulis genome reveals highly conserved microsyntenic regions with two related Malpighiales species.

Passiflora edulis is the most widely cultivated species of passionflowers, cropped mainly for industrialized juice production and fresh fruit consumption. Despite its commercial importance, little is known about the genome structure of P. edulis. To fill in this gap in our knowledge, a genomic library was built, and now completely sequenced over 100 large-inserts. Sequencing data were assembled from long sequence reads, and structural sequence annotation resulted in the prediction of about 1,900 genes, providing data for subsequent functional analysis. The richness of repetitive elements was also evaluated. Microsyntenic regions of P. edulis common to Populus trichocarpa and Manihot esculenta,…

Read More »

Sunday, September 22, 2019

A PECTIN METHYLESTERASE gene at the maize Ga1 locus confers male function in unilateral cross-incompatibility.

Unilateral cross-incompatibility (UCI) is a unidirectional inter/intra-population reproductive barrier when both parents are self-compatible. Maize Gametophyte factor1 (Ga1) is an intraspecific UCI system and has been utilized in breeding. However, the mechanism underlying maize UCI specificity has remained mysterious for decades. Here, we report the cloning of ZmGa1P, a pollen-expressed PECTIN METHYLESTERASE (PME) gene at the Ga1 locus that can confer the male function in the maize UCI system. Homozygous transgenic plants expressing ZmGa1P in a ga1 background can fertilize Ga1-S plants and can be fertilized by pollen of ga1 plants. ZmGa1P protein is predominantly localized to the apex of…

Read More »

Sunday, September 22, 2019

Ma orthologous genes in Prunus spp. shed light on a noteworthy NBS-LRR cluster conferring differential resistance to root-knot nematodes.

Root-knot nematodes (RKNs) are considerable polyphagous pests that severely challenge plants worldwide and especially perennials. The specific genetic resistance of plants mainly relies on the NBS-LRR genes that are pivotal factors for pathogens control. In Prunus spp., the Ma plum and RMja almond genes possess different spectra for resistance to RKNs. While previous works based on the Ma gene allowed to clone it and to decipher its peculiar TIR-NBS-LRR (TNL) structure, we only knew that the RMja gene mapped on the same chromosome as Ma. We carried out a high-resolution mapping using an almond segregating F2 progeny of 1448 seedlings…

Read More »

Sunday, September 22, 2019

Convergent evolution of complex genomic rearrangements in two fungal meiotic drive elements.

Meiotic drive is widespread in nature. The conflict it generates is expected to be an important motor for evolutionary change and innovation. In this study, we investigated the genomic consequences of two large multi-gene meiotic drive elements, Sk-2 and Sk-3, found in the filamentous ascomycete Neurospora intermedia. Using long-read sequencing, we generated the first complete and well-annotated genome assemblies of large, highly diverged, non-recombining regions associated with meiotic drive elements. Phylogenetic analysis shows that, even though Sk-2 and Sk-3 are located in the same chromosomal region, they do not form sister clades, suggesting independent origins or at least a long…

Read More »

Sunday, September 22, 2019

Discovery of mcr-1-mediated colistin resistance in a highly virulent Escherichia coli lineage.

Resistance to last-line polymyxins mediated by the plasmid-borne mobile colistin resistance gene (mcr-1) represents a new threat to global human health. Here we present the complete genome sequence of an mcr-1-positive multidrug-resistant Escherichia coli strain (MS8345). We show that MS8345 belongs to serotype O2:K1:H4, has a large 241,164-bp IncHI2 plasmid that carries 15 other antibiotic resistance genes (including the extended-spectrum ß-lactamase blaCTX-M-1) and 3 putative multidrug efflux systems, and contains 14 chromosomally encoded antibiotic resistance genes. MS8345 also carries a large ColV-like virulence plasmid that has been associated with E. coli bacteremia. Whole-genome phylogeny revealed that MS8345 clusters within a…

Read More »

Sunday, September 22, 2019

Functionality of two origins of replication in Vibrio cholerae strains with a single chromosome.

Chromosomal inheritance in bacteria usually entails bidirectional replication of a single chromosome from a single origin into two copies and subsequent partitioning of one copy each into daughter cells upon cell division. However, the human pathogen Vibrio cholerae and other Vibrionaceae harbor two chromosomes, a large Chr1 and a small Chr2. Chr1 and Chr2 have different origins, an oriC-type origin and a P1 plasmid-type origin, respectively, driving the replication of respective chromosomes. Recently, we described naturally occurring exceptions to the two-chromosome rule of Vibrionaceae: i.e., Chr1 and Chr2 fused single chromosome V. cholerae strains, NSCV1 and NSCV2, in which both…

Read More »

1 2 3 5

Subscribe for blog updates:

Archives

Press Release

Pacific Biosciences Announces New Chief Financial Officer

Monday, September 14, 2020

Stay
Current

Visit our blog »