Menu
July 7, 2019  |  

Nanoarrays on passivated aluminum surface for site-specific immobilization of biomolecules

The rapid development of biosensing platforms for highly sensitive and specific detection raises the desire of precise localization of biomolecules onto various material surfaces. Aluminum has been strategically employed in the biosensor system due to its compatibility with CMOS technology and its optical and electrical properties such as prominent propagation of surface plasmons. Herein, we present an adaptable method for preparation of carbon nanoarrays on aluminum surface passivated with poly(vinylphosphonic acid) (PVPA). The carbon nanoarrays were defined by means of electron beam induced deposition (EBID) and they were employed to realize site-specific immobilization of target biomolecules. To demonstrate the concept, selective streptavidin/neutravidin immobilization on the carbon nanoarrays was achieved through protein physisorption with a significantly high contrast of the carbon domains over the surrounding PVPA-modified aluminum surface. By adjusting the fabrication parameters, local protein densities could be varied on similarly sized nanodomains in a parallel process. Moreover, localization of single 40 nm biotinylated beads was achieved by loading them on the neutravidin-decorated nanoarrays. As a further demonstration, DNA polymerase with a streptavidin tag was bound to the biotin-beads that were immobilized on the nanoarrays and in situ rolling circle amplification (RCA) was subsequently performed. The observation of organized DNA arrays synthesized by RCA verified the nanoscale localization of the enzyme with retained biological activity. Hence, the presented approach could provide a flexible and universal avenue to precise localizing various biomolecules on aluminum surface for potential biosensor and bioelectronic applications.


July 7, 2019  |  

Draft genome sequence of Tuber borchii Vittad., a whitish edible truffle.

The ascomycete Tuber borchii (Pezizomycetes) is a whitish edible truffle that establishes ectomycorrhizal symbiosis with trees and shrubs. This fungus is ubiquitous in Europe and is also cultivated outside Europe. Here, we present the draft genome sequence of T. borchii strain Tbo3840 (97.18 Mb in 969 scaffolds, with 12,346 predicted protein-coding genes).


July 7, 2019  |  

The complete genome sequence of Rhodobaca barguzinensis alga05 (DSM 19920) documents its adaptation for life in soda lakes.

Soda lakes, with their high salinity and high pH, pose a very challenging environment for life. Microorganisms living in these harsh conditions have had to adapt their physiology and gene inventory. Therefore, we analyzed the complete genome of the haloalkaliphilic photoheterotrophic bacterium Rhodobaca barguzinensis strain alga05. It consists of a 3,899,419 bp circular chromosome with 3624 predicted coding sequences. In contrast to most of Rhodobacterales, this strain lacks any extrachromosomal elements. To identify the genes responsible for adaptation to high pH, we compared the gene inventory in the alga05 genome with genomes of 17 reference strains belonging to order Rhodobacterales. We found that all haloalkaliphilic strains contain the mrpB gene coding for the B subunit of the MRP Na+/H+ antiporter, while this gene is absent in all non-alkaliphilic strains, which indicates its importance for adaptation to high pH. Further analysis showed that alga05 requires organic carbon sources for growth, but it also contains genes encoding the ethylmalonyl-CoA pathway for CO2 fixation. Remarkable is the genetic potential to utilize organophosphorus compounds as a source of phosphorus. In summary, its genetic inventory indicates a large flexibility of the alga05 metabolism, which is advantageous in rapidly changing environmental conditions in soda lakes.


July 7, 2019  |  

Near- complete genome sequences of Streptomyces sp. strains AC1-42T and AC1-42W, isolated from bat guano from Cabalyorisa Cave, Mabini, Pangasinan, Philippines.

Streptomyces sp. strains AC1-42T and AC1-42W, isolated from bat guano from Cabalyorisa Cave, Mabini, Pangasinan, Philippines, are active against Bacillus subtilis subsp. subtilis KCTC 3135T. The near-complete genome sequences reported here represent a possible source of ribosomally synthesized, posttranslationally mod- ified peptides, such as lantipeptides, bacteriocins, linaridin, and a lasso peptide.


July 7, 2019  |  

Complete genome sequence of Lactococcus lactis subsp. lactis SLPE1-3, a novel lactic acid bacterium causing postharvest decay of the mushroom Pleurotus eryngii

Lactococcus lactis subsp. lactis is a pathogenic bacterium causing postharvest decay of the cultivated mushroom Pleurotus eryngii, whose pathogenic mechanism is little known. Sequencing of its complete genome is a prerequisite for revealing the molecular mechanism of infection. In this research, the complete genome of SLPE1-3 was obtained using the Single Molecular Real Time (SMRT) sequencing strategy. The genome was analyzed both structurally and functionally. The complete genome of SLPE1-3 consists of a single, circular chromosome (2,522,493 bp; 34.91% GC content) without any plasmid. The results showed the feasibility and superiority of SMRT in bacterial complete-genome research. The genome of SLPE1-3 has the specific features of L. lactis subsp. lactis not just in the phylogenesis and genome structure, but also in functional classification. Compared with L. lactis subsp. lactis IL1403, L. lactis subsp. cremoris MG1363 and L. lactis subsp. lactis KF147, 23 peculiar genes were identified in SLPE1-3 which were involved in lipid metabolism, cell wall biogenesis and some functional enzymes. In addition, 37 potential genes relating to antifungal function were filtered for further mechanism research.


July 7, 2019  |  

Complete genome sequence of soil actinobacteria Streptomyces cavourensis TJ430.

A new actinobacteria Streptomyces cavourensis TJ430 was isolated from the mountain soil collected from the southwest of China. In previous study, TJ430 showed striking bactericidal activities and strong ability of antibiotic production. Here, we report complete genome of this bacterium, consisting of 7.6?Mb linear chromosome and 0.2?Mb plasmids. It was predicted 6450 genes in chromosome and 225 genes in plasmids, as well as 12 gene islands in chromosome. Abundant genes have predicted functions in antibiotic metabolism and stress resistance. A whole-genome comparison of S. cavourensis TJ430, S. coelicolor A3(2), and S. lividans 66 indicates that TJ430 has a relatively high degree of strain specificity. The 16S rRNA phylogenetic tree shows the high identities (99.79%) of TJ430 with S. cavourensis DSM40300. TJ430 is a new and rare Streptomyces species, and analysis of its genome helps us to better understand primary metabolism mechanism of this isolate, as well as the evolutionary biology.© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


July 7, 2019  |  

Near-complete genome sequence of Ralstonia solanacearum T523, a phylotype I tomato phytopathogen isolated from the Philippines.

Ralstonia solanacearum strain T523 is the major phytopathogen causing tomato bacterial wilt in the Philippines. Here, we report the complete chromosome and draft megaplasmid genomes with predicted gene inventories supporting rhizo- sphere processes, extensive plant virulence effectors, and the production of bioac- tive signaling metabolites, such as ralstonin, micacocidin, and homoserine lactone.


July 7, 2019  |  

Complete genome sequence of herpes simplex virus 2 strain 333.

Herpes simplex virus 2, or human herpesvirus 2, is a ubiquitous human pathogen that causes genital ulcerations and establishes latency in sacral root ganglia. We fully sequenced and manually curated the viral genome sequence of herpes simplex virus 2, strain 333 using Pacific Biosciences and Illumina sequencing technologies.


July 7, 2019  |  

Complete genome sequences of two Rhodobacter strains.

We report the complete genome sequences of two strains of the Alphaproteobacteria genus Rhodobacter, Rhodobacter blasticus 28/5, the source of the commercially available enzyme RsaI, and a new isolate of Rhodobacter sphaeroides 2.4.1. Both strains contain multiple restriction-modification systems, and their DNA methylation motifs are included in this report.


July 7, 2019  |  

Myxobacteria: Unraveling the potential of a unique microbiome niche

Natural products obtained from microorganisms have been playing an imperative role in drug discovery for decades. Hence, rightfully, microorganisms are considered as the richest source of biochemical remedies. In this review, we represent an unexplored family of bacteria considered to be prolific producers of diverse metabolites. Myxobacteria are gram-negative bacteria which have been reported to produce large families of secondary metabolites with prominent antimicrobial, antifungal, and antitumor activities. Klaus Gerth, Norbert Bedorf, Herbert Irschik, and Hans Reichenbach observed the antifungal activity of Sorangium cellulosum against Mucor hiemalis. In 2006, Hans Reichenbach and his team obtained a novel macrolide cruentaren A from Byssovorax cruenta (myxobacteria). Cruentaren A showed inhibitory activity against yeast and filamentous fungi. It also showed selective inhibitory activity against mitochondrial F-type ATPase. Cruentaren A has been found to be cytotoxic against various human cancer cell lines. In 2007, Reichenbach and his colleagues named an antibiotic produced by Sorangium cellulosum strain Soce895 as thuggacin. This antibiotic acts on the respiration of some bacteria. Other antibiotics from myxobacteria, myxovirescin, and megovalicin show broad-spectrum bactericidal activity. The College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China, evaluated the antitumor property of epothilone, which has shown promise for breast cancer treatment. The study determined high potential and versatile antimicrobial and antitumor secondary metabolites of myxobacteria. In yet another study, Ratjadone A, that exhibited strong antiviral activity against HIV, was obtained from Sorangium cellulosum strain. This compound shows antiviral activity in vitro but has low selectivity. Further search on the derivatives of this compound might help in the future. This is rationale enough to pre-empt that every strain of myxobacteria might be endowed to produce secondary metabolites with novel mechanisms of action which are rarely produced by other microbes. The available data establishes the impact of myxobacterial studies in search for novel metabolites as a front runner in microbiological research and worthy enough to be a thrust area of research in pharmacology.


July 7, 2019  |  

Whole-genome sequence of purple non-sulfur bacteria, Rhodobacter sphaeroides strain MBTLJ-8 with improved CO2 reduction capacity.

Rhodobacter sphaeroides consists of two chromosomes and many plasmids and incorporates many environmentally important functional gene. Rhodobacter sphaeroides MBTLJ-8 was derived from R. sphaeroides 2.4.1 using chemical mutagenesis and is characterized by enhanced production of physiological active compounds as well as improved carbon dioxide reduction capacity. We reported the complete genome sequence and characteristics based on genomic information of this bacteria. Therefore, this genome sequence provides elucidation for improved CO2 fixation and enhanced physiological active compounds production, and will be used as the efficient photosynthetic bacteria for the biological CO2 reduction system. Copyright © 2018 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of the endophytic bacterium Chryseobacterium indologenes PgBE177, isolated from Panax quinquefolius.

Chryseobacterium indologenes PgBE177, isolated from the root tissue of a 4-year-old Panax quinquefolius plant, showed antagonistic activity against Pseu- domonas syringae pv. tomato DC3000, a bacterial pathogen. Here, we report the whole-genome sequence of C. indologenes PgBE177. The bacterium contains bacteri- ocin gene clusters and has the potential to stimulate plant growth.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.