Menu
April 21, 2020  |  

FadR1, a pathway-specific activator of fidaxomicin biosynthesis in Actinoplanes deccanensis Yp-1.

Fidaxomicin, an 18-membered macrolide antibiotic, is highly active against Clostridium difficile, the most common cause of diarrhea in hospitalized patients. Though the biosynthetic mechanism of fidaxomicin has been well studied, little is known about its regulatory mechanism. Here, we reported that FadR1, a LAL family transcriptional regulator in the fidaxomicin cluster of Actinoplanes deccanensis Yp-1, acts as an activator for fidaxomicin biosynthesis. The disruption of fadR1 abolished the ability to synthesize fidaxomicin, and production could be restored by reintegrating a single copy of fadR1. Overexpression of fadR1 resulted in an approximately 400 % improvement in fidaxomicin production. Electrophoretic mobility shift assays indicated that fidaxomicin biosynthesis is under the control of FadR1 through its binding to the promoter regions of fadM, fadA1-fadP2, fadS2-fadC, and fadE-fadF, respectively. And the conserved binding sites of FadR1 within the four promoter regions were determined by footprinting experiment. All results indicated that fadR1 encodes a pathway-specific positive regulator of fidaxomicin biosynthesis and upregulates the transcription levels of most of genes by binding to the four above intergenic regions. In summary, we not only clearly elucidate the regulatory mechanism of FadR1 but also provide strategies for the construction of industrial high-yield strain of fidaxomicin.


April 21, 2020  |  

Nephromyces encodes a urate metabolism pathway and predicted peroxisomes, demonstrating that these are not ancient losses of apicomplexans.

The phylum Apicomplexa is a quintessentially parasitic lineage, whose members infect a broad range of animals. One exception to this may be the apicomplexan genus Nephromyces, which has been described as having a mutualistic relationship with its host. Here we analyze transcriptome data from Nephromyces and its parasitic sister taxon, Cardiosporidium, revealing an ancestral purine degradation pathway thought to have been lost early in apicomplexan evolution. The predicted localization of many of the purine degradation enzymes to peroxisomes, and the in silico identification of a full set of peroxisome proteins, indicates that loss of both features in other apicomplexans occurred multiple times. The degradation of purines is thought to play a key role in the unusual relationship between Nephromyces and its host. Transcriptome data confirm previous biochemical results of a functional pathway for the utilization of uric acid as a primary nitrogen source for this unusual apicomplexan.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.