X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, April 21, 2020

Genomic and transcriptomic insights into the survival of the subaerial cyanobacterium Nostoc flagelliforme in arid and exposed habitats.

The cyanobacterium Nostoc flagelliforme is an extremophile that thrives under extraordinary desiccation and ultraviolet (UV) radiation conditions. To investigate its survival strategies, we performed whole-genome sequencing of N. flagelliforme CCNUN1 and transcriptional profiling of its field populations upon rehydration in BG11 medium. The genome of N. flagelliforme is 10.23 Mb in size and contains 10 825 predicted protein-encoding genes, making it one of the largest complete genomes of cyanobacteria reported to date. Comparative genomics analysis among 20 cyanobacterial strains revealed that genes related to DNA replication, recombination and repair had disproportionately high contributions to the genome expansion. The ability of…

Read More »

Tuesday, April 21, 2020

Genetic variation in the conjugative plasmidome of a hospital effluent multidrug resistant Escherichia coli strain.

Bacteria harboring conjugative plasmids have the potential for spreading antibiotic resistance through horizontal gene transfer. It is described that the selection and dissemination of antibiotic resistance is enhanced by stressors, like metals or antibiotics, which can occur as environmental contaminants. This study aimed at unveiling the composition of the conjugative plasmidome of a hospital effluent multidrug resistant Escherichia coli strain (H1FC54) under different mating conditions. To meet this objective, plasmid pulsed field gel electrophoresis, optical mapping analyses and DNA sequencing were used in combination with phenotype analysis. Strain H1FC54 was observed to harbor five plasmids, three of which were conjugative…

Read More »

Tuesday, April 21, 2020

The Genome of Armadillidium vulgare (Crustacea, Isopoda) Provides Insights into Sex Chromosome Evolution in the Context of Cytoplasmic Sex Determination.

The terrestrial isopod Armadillidium vulgare is an original model to study the evolution of sex determination and symbiosis in animals. Its sex can be determined by ZW sex chromosomes, or by feminizing Wolbachia bacterial endosymbionts. Here, we report the sequence and analysis of the ZW female genome of A. vulgare. A distinguishing feature of the 1.72 gigabase assembly is the abundance of repeats (68% of the genome). We show that the Z and W sex chromosomes are essentially undifferentiated at the molecular level and the W-specific region is extremely small (at most several hundreds of kilobases). Our results suggest that…

Read More »

Tuesday, April 21, 2020

Complete Genome Sequence of the Wolbachia wAlbB Endosymbiont of Aedes albopictus.

Wolbachia, an alpha-proteobacterium closely related to Rickettsia, is a maternally transmitted, intracellular symbiont of arthropods and nematodes. Aedes albopictus mosquitoes are naturally infected with Wolbachia strains wAlbA and wAlbB. Cell line Aa23 established from Ae. albopictus embryos retains only wAlbB and is a key model to study host-endosymbiont interactions. We have assembled the complete circular genome of wAlbB from the Aa23 cell line using long-read PacBio sequencing at 500× median coverage. The assembled circular chromosome is 1.48 megabases in size, an increase of more than 300 kb over the published draft wAlbB genome. The annotation of the genome identified 1,205…

Read More »

Tuesday, April 21, 2020

Do the toll-like receptors and complement systems play equally important roles in freshwater adapted Dolly Varden char (Salvelinus malma)?

Unlike the normal anadromous lifestyle, Chinese native Dolly Varden char (Salvelinus malma) is locked in land and lives in fresh water lifetime. To explore the effect of freshwater adaption on its immune system, we constructed a pooled cDNA library of hepatopancreas and spleen of Chinese freshwater Dolly Varden char (S. malma). A total of 27,829 unigenes were generated from 31,233 high-quality transcripts and 17,670 complete open reading frames (ORF) were identified. Totally 25,809 unigenes were successfully annotated and it classified more native than adaptive immunity-associated genes, and more genes involved in toll-like receptor signal pathway than those in complement and…

Read More »

Tuesday, April 21, 2020

Finding Nemo’s Genes: A chromosome-scale reference assembly of the genome of the orange clownfish Amphiprion percula.

The iconic orange clownfish, Amphiprion percula, is a model organism for studying the ecology and evolution of reef fishes, including patterns of population connectivity, sex change, social organization, habitat selection and adaptation to climate change. Notably, the orange clownfish is the only reef fish for which a complete larval dispersal kernel has been established and was the first fish species for which it was demonstrated that antipredator responses of reef fishes could be impaired by ocean acidification. Despite its importance, molecular resources for this species remain scarce and until now it lacked a reference genome assembly. Here, we present a…

Read More »

Tuesday, April 21, 2020

The red bayberry genome and genetic basis of sex determination.

Morella rubra, red bayberry, is an economically important fruit tree in south China. Here, we assembled the first high-quality genome for both a female and a male individual of red bayberry. The genome size was 313-Mb, and 90% sequences were assembled into eight pseudo chromosome molecules, with 32 493 predicted genes. By whole-genome comparison between the female and male and association analysis with sequences of bulked and individual DNA samples from female and male, a 59-Kb region determining female was identified and located on distal end of pseudochromosome 8, which contains abundant transposable element and seven putative genes, four of them…

Read More »

Tuesday, April 21, 2020

Characterization and analysis of the transcriptome in Gymnocypris selincuoensis on the Qinghai-Tibetan Plateau using single-molecule long-read sequencing and RNA-seq.

The lakes on the Qinghai-Tibet Plateau (QTP) are the largest and highest lake group in the world. Gymnocypris selincuoensis is the only cyprinid fish living in lake Selincuo, the largest lake on QTP. However, its genetic resource is still blank, limiting studies on molecular and genetic analysis. In this study, the transcriptome of G. selincuoensis was first generated by using PacBio Iso-Seq and Illumina RNA-seq. A full-length (FL) transcriptome with 75,435 transcripts was obtained by Iso-Seq with N50 length of 3,870 bp. Among all transcripts, 75,016 were annotated to public databases, 64,710 contain complete open reading frames and 2,811 were long…

Read More »

Tuesday, April 21, 2020

One Aeromonas salmonicida subsp. salmonicida isolate with a pAsa5 variant bearing antibiotic resistance and a pRAS3 variant making a link with a swine pathogen.

The Gram-negative bacterium Aeromonas salmonicida subsp. salmonicida is an aquatic pathogen which causes furunculosis to salmonids, especially in fish farms. The emergence of strains of this bacterium exhibiting antibiotic resistance is increasing, limiting the effectiveness of antibiotherapy as a treatment against this worldwide disease. In the present study, we discovered an isolate of A. salmonicida subsp. salmonicida that harbors two novel plasmids variants carrying antibiotic resistance genes. The use of long-read sequencing (PacBio) allowed us to fully characterize those variants, named pAsa5-3432 and pRAS3-3432, which both differ from their classic counterpart through their content in mobile genetic elements. The plasmid…

Read More »

Tuesday, April 21, 2020

Alternative Splicing of the Delta-Opioid Receptor Gene Suggests Existence of New Functional Isoforms.

The delta-opioid receptor (DOPr) participates in mediating the effects of opioid analgesics. However, no selective agonists have entered clinical care despite potential to ameliorate many neurological and psychiatric disorders. In an effort to address the drug development challenges, the functional contribution of receptor isoforms created by alternative splicing of the three-exonic coding gene, OPRD1, has been overlooked. We report that the gene is transcriptionally more diverse than previously demonstrated, producing novel protein isoforms in humans and mice. We provide support for the functional relevance of splice variants through context-dependent expression profiling (tissues, disease model) and conservation of the transcriptional landscape…

Read More »

Tuesday, April 21, 2020

Retrospective whole-genome sequencing analysis distinguished PFGE and drug-resistance-matched retail meat and clinical Salmonella isolates.

Non-typhoidal Salmonella is a leading cause of outbreak and sporadic-associated foodborne illnesses in the United States. These infections have been associated with a range of foods, including retail meats. Traditionally, pulsed-field gel electrophoresis (PFGE) and antibiotic susceptibility testing (AST) have been used to facilitate public health investigations of Salmonella infections. However, whole-genome sequencing (WGS) has emerged as an alternative tool that can be routinely implemented. To assess its potential in enhancing integrated surveillance in Pennsylvania, USA, WGS was used to directly compare the genetic characteristics of 7 retail meat and 43 clinical historic Salmonella isolates, subdivided into 3 subsets based…

Read More »

Tuesday, April 21, 2020

Complete Genome Sequence of Saccharospirillum mangrovi HK-33T Sheds Light on the Ecological Role of a Bacterium in Mangrove Sediment Environment.

We present the genome sequence of Saccharospirillum mangrovi HK-33T, isolated from a mangrove sediment sample in Haikou, China. The complete genome of S. mangrovi HK-33T consisted of a single-circular chromosome with the size of 3,686,911 bp as well as an average G?+?C content of 57.37%, and contained 3,383 protein-coding genes, 4 operons of 16S-23S-5S rRNA genes, and 52 tRNA genes. Genomic annotation indicated that the genome of S. mangrovi HK-33T had many genes related to oligosaccharide and polysaccharide degradation and utilization of polyhydroxyalkanoate. For nitrogen cycle, genes encoding nitrate and nitrite reductase, glutamate dehydrogenase, glutamate synthase, and glutamine synthetase could be…

Read More »

Tuesday, April 21, 2020

Biomimetic hydroxyapatite nanocrystals are an active carrier for Salmonella bacteriophages.

The use of bacteriophages represents a valid alternative to conventional antimicrobial treatments, overcoming the widespread bacterial antibiotic resistance phenomenon. In this work, we evaluated whether biomimetic hydroxyapatite (HA) nanocrystals are able to enhance some properties of bacteriophages. The final goal of this study was to demonstrate that biomimetic HA nanocrystals can be used for bacteriophage delivery in the context of bacterial infections, and contribute – at the same time – to enhance some of the biological properties of the same bacteriophages such as stability, preservation, antimicrobial activity, and so on.Phage isolation and characterization were carried out by using Mitomycin C…

Read More »

Tuesday, April 21, 2020

Analysis of transcripts and splice isoforms in Medicago sativa L. by single-molecule long-read sequencing.

The full-length transcriptome of alfalfa was analyzed with PacBio single-molecule long-read sequencing technology. The transcriptome data provided full-length sequences and gene isoforms of transcripts in alfalfa, which will improve genome annotation and enhance our understanding of the gene structure of alfalfa. As an important forage, alfalfa (Medicago sativa L.) is world-wide planted. For its complexity of genome and unfinished whole genome sequencing, the sequences and complete structure of mRNA transcripts remain unclear in alfalfa. In this study, single-molecule long-read sequencing was applied to investigate the alfalfa transcriptome using the Pacific Biosciences platform, and a total of 113,321 transcripts were obtained…

Read More »

Tuesday, April 21, 2020

Plastid genomes from diverse glaucophyte genera reveal a largely conserved gene content and limited architectural diversity.

Plastid genome (ptDNA) data of Glaucophyta have been limited for many years to the genus Cyanophora. Here, we sequenced the ptDNAs of Gloeochaete wittrockiana, Cyanoptyche gloeocystis, Glaucocystis incrassata, and Glaucocystis sp. BBH. The reported sequences are the first genome-scale plastid data available for these three poorly studied glaucophyte genera. Although the Glaucophyta plastids appear morphologically “ancestral,” they actually bear derived genomes not radically different from those of red algae or viridiplants. The glaucophyte plastid coding capacity is highly conserved (112 genes shared) and the architecture of the plastid chromosomes is relatively simple. Phylogenomic analyses recovered Glaucophyta as the earliest diverging…

Read More »

1 2 3 4 5

Subscribe for blog updates:

Archives