Menu
July 7, 2019  |  

Genome sequences of the Listeria ivanovii subsp. ivanovii type strain and two Listeria ivanovii subsp. londoniensis strains.

We present the complete genomes of Listeria ivanovii subsp. ivanovii WSLC 3010 (ATCC 19119(T)), Listeria ivanovii subsp. londoniensis WSLC 30151 (SLCC 8854), and Listeria ivanovii subsp. londoniensis WSLC 30167 (SLCC 6032), representing the type strain of the species and two strains of the same serovar but different properties, respectively. Copyright © 2015 Hupfeld et al.


July 7, 2019  |  

Resources for genetic and genomic analysis of emerging pathogen Acinetobacter baumannii.

Acinetobacter baumannii is a Gram-negative bacterial pathogen notorious for causing serious nosocomial infections that resist antibiotic therapy. Research to identify factors responsible for the pathogen’s success has been limited by the resources available for genome-scale experimental studies. This report describes the development of several such resources for A. baumannii strain AB5075, a recently characterized wound isolate that is multidrug resistant and displays robust virulence in animal models. We report the completion and annotation of the genome sequence, the construction of a comprehensive ordered transposon mutant library, the extension of high-coverage transposon mutant pool sequencing (Tn-seq) to the strain, and the identification of the genes essential for growth on nutrient-rich agar. These resources should facilitate large-scale genetic analysis of virulence, resistance, and other clinically relevant traits that make A. baumannii a formidable public health threat.Acinetobacter baumannii is one of six bacterial pathogens primarily responsible for antibiotic-resistant infections that have become the scourge of health care facilities worldwide. Eliminating such infections requires a deeper understanding of the factors that enable the pathogen to persist in hospital environments, establish infections, and resist antibiotics. We present a set of resources that should accelerate genome-scale genetic characterization of these traits for a reference isolate of A. baumannii that is highly virulent and representative of current outbreak strains. Copyright © 2015, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Draft genome sequence of Alicycliphilus sp. B1, an N-acylhomoserine lactone-producing bacterium, isolated from activated sludge.

We report here the draft genome sequence of Alicycliphilus sp. B1, isolated from activated sludge in a wastewater treatment plant of an electronic component factory as an N-acylhomoserine lactone-producing strain. The draft genome is 7,465,959 bp in length, with 59 large contigs. About 7,391 protein-coding genes, 82 tRNAs, and 13 rRNAs are predicted from this assembly. Copyright © 2015 Okutsu et al.


July 7, 2019  |  

Complete closed genome sequences of a Mannheimia haemolytica serotype A1 leukotoxin deletion mutant and its wild-type parent strain.

Mannheimia haemolytica is a bacterial pathogen that secretes leukotoxin (LktA) which binds to leukocyte membranes via CD18, causing bacterial pneumonia in ruminants. We report the complete closed genome sequences of a leukotoxin mutant and its parent strain that are frequently used in respiratory disease studies. Copyright © 2015 Heaton et al.


July 7, 2019  |  

The complete genome sequence of Bacillus thuringiensis serovar Hailuosis YWC2-8.

Bacillus thuringiensis, a typical aerobic, Gram-positive, spore-forming bacterium, is an important microbial insecticide widely used in the control of agricultural pests. B. thuringiensis serovar Hailuosis YWC2-8 with high insecticidal activity against Diptera and Lepidoptera insects has three insecticidal crystal protein genes, such as cry4Cb2, cry30Ea2, and cry56Aa1. In this study, the complete genome sequence of B. thuringiensis YWC2-8 was analyzed, which contains one circular gapless chromosome and six circular plasmids. Copyright © 2015. Published by Elsevier B.V.


July 7, 2019  |  

Genomic insights into the taxonomic status of the three subspecies of Bacillus subtilis.

Bacillus subtilis contains three subspecies, i.e., subspecies subtilis, spizizenii, and inaquosorum. As these subspecies are phenotypically indistinguishable, their differentiation has relied on phylogenetic analysis of multiple protein-coding gene sequences. B. subtilis subsp. inaquosorum is a recently proposed taxon that encompasses strain KCTC 13429(T) and related strains, which were previously classified as members of subspecies spizizenii. However, DNA-DNA hybridization (DDH) values among the three subspecies raised a question as to their independence. Thus, we evaluated the taxonomic status of subspecies inaquosorum using genome-based comparative analysis. In contrast to the previous experimental values of DDH, the inter-genomic relatedness inferred by average nucleotide identity (ANI) values indicated that subspecies inaquosorum and spizizenii were sufficiently different from subspecies subtilis and hence raised the possibility that the former two could be classified as separate species from B. subtilis. The genome-based tree also supported the separation of the two subspecies from B. subtilis. The exclusive presence of a subtilin synthesis system in subspecies spizizenii was a remarkable genetic characteristic that could even distinguish subspecies spizizenii from subspecies inaquosorum in addition to the low ANI values (<95%). Conclusively, the genome-based data obtained in this study demonstrated that subspecies inaquosorum and spizizenii are clearly distinguished from subspecies subtilis, and raises the possibility that these two subspecies could be classified as separate species from B. subtilis. In addition, the low ANI values between subspecies inaquosorum and spizizenii and the exclusive presence of subtilin synthesis genes in subspecies spizizenii also suggest circumscription of these two subspecies at the species level. Copyright © 2013 Elsevier GmbH. All rights reserved.


July 7, 2019  |  

Methyltransferases acquired by lactococcal 936-type phage provide protection against restriction endonuclease activity

BACKGROUND:So-called 936-type phages are among the most frequently isolated phages in dairy facilities utilising Lactococcus lactis starter cultures. Despite extensive efforts to control phage proliferation and decades of research, these phages continue to negatively impact cheese production in terms of the final product quality and consequently, monetary return.RESULTS:Whole genome sequencing and in silico analysis of three 936-type phage genomes identified several putative (orphan) methyltransferase (MTase)-encoding genes located within the packaging and replication regions of the genome. Utilising SMRT sequencing, methylome analysis was performed on all three phages, allowing the identification of adenine modifications consistent with N-6 methyladenine sequence methylation, which in some cases could be attributed to these phage-encoded MTases. Heterologous gene expression revealed that M.Phi145I/M.Phi93I and M.Phi93DAM, encoded by genes located within the packaging module, provide protection against the restriction enzymes HphI and DpnII, respectively, representing the first functional MTases identified in members of 936-type phages.CONCLUSIONS:SMRT sequencing technology enabled the identification of the target motifs of MTases encoded by the genomes of three lytic 936-type phages and these MTases represent the first functional MTases identified in this species of phage. The presence of these MTase-encoding genes on 936-type phage genomes is assumed to represent an adaptive response to circumvent host encoded restriction-modification systems thereby increasing the fitness of the phages in a dynamic dairy environment.


July 7, 2019  |  

Draft genome sequence of a metabolically diverse Antarctic supraglacial stream organism, Polaromonas sp. strain CG9_12, determined using Pacific Biosciences Single-Molecule Real-Time Sequencing Technology.

Polaromonas species are found in a diversity of environments and are particularly common in icy ecosystems. Polaromonas sp. strain CG9_12 is an aerobic, Gram-negative, catalase-positive, white-pigmented bacterium of the Proteobacteria phylum. Here, we present the draft genome sequence of Polaromonas sp. strain CG9_12, isolated from an Antarctic supraglacial stream. Copyright © 2014 Smith et al.


July 7, 2019  |  

Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm animals and humans by specific plasmid lineages.

Third-generation cephalosporins are a class of ß-lactam antibiotics that are often used for the treatment of human infections caused by Gram-negative bacteria, especially Escherichia coli. Worryingly, the incidence of human infections caused by third-generation cephalosporin-resistant E. coli is increasing worldwide. Recent studies have suggested that these E. coli strains, and their antibiotic resistance genes, can spread from food-producing animals, via the food-chain, to humans. However, these studies used traditional typing methods, which may not have provided sufficient resolution to reliably assess the relatedness of these strains. We therefore used whole-genome sequencing (WGS) to study the relatedness of cephalosporin-resistant E. coli from humans, chicken meat, poultry and pigs. One strain collection included pairs of human and poultry-associated strains that had previously been considered to be identical based on Multi-Locus Sequence Typing, plasmid typing and antibiotic resistance gene sequencing. The second collection included isolates from farmers and their pigs. WGS analysis revealed considerable heterogeneity between human and poultry-associated isolates. The most closely related pairs of strains from both sources carried 1263 Single-Nucleotide Polymorphisms (SNPs) per Mbp core genome. In contrast, epidemiologically linked strains from humans and pigs differed by only 1.8 SNPs per Mbp core genome. WGS-based plasmid reconstructions revealed three distinct plasmid lineages (IncI1- and IncK-type) that carried cephalosporin resistance genes of the Extended-Spectrum Beta-Lactamase (ESBL)- and AmpC-types. The plasmid backbones within each lineage were virtually identical and were shared by genetically unrelated human and animal isolates. Plasmid reconstructions from short-read sequencing data were validated by long-read DNA sequencing for two strains. Our findings failed to demonstrate evidence for recent clonal transmission of cephalosporin-resistant E. coli strains from poultry to humans, as has been suggested based on traditional, low-resolution typing methods. Instead, our data suggest that cephalosporin resistance genes are mainly disseminated in animals and humans via distinct plasmids.


July 7, 2019  |  

Complete genome sequence of Bacillus subtilis strain PY79.

Bacillus subtilis is a Gram-positive soil-dwelling and endospore-forming bacterium in the phylum Firmicutes. B. subtilis strain PY79 is a prototrophic laboratory strain that has been highly used for studying a wide variety of cellular pathways. Here, we announce the complete whole-genome sequence of B. subtilis PY79.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.