Shewanella baltica 128 is a specific spoilage organism (SSO) isolated from the refrigerated shrimp that results in shrimp spoilage. This study reported the complete genome sequencing of this strain, with the primary annotations associated with amino acid transport and metabolism (8.66%), indicating that S. baltica 128 has good potential for degrading proteins. In vitro experiments revealed Shewanella baltica 128 could adapt to the stress conditions by regulating its growth and biofilm formation. Genes that related to the spoilage-related metabolic pathways, including trimethylamine metabolism (torT), sulfur metabolism (cysM), putrescine metabolism (speC), biofilm formation (rpoS) and serine protease production (degS), were identified.…
Here, we announce the complete genome sequence of Streptococcus pyogenes strain 10-85 (type emm1), isolated from a patient with streptococcal toxic shock syndrome (STSS). The strain lacks the genomic regions encoding SalR-SalK, a two-component regulatory system, and the adjacent type I restriction modification system.Copyright © 2019 Tatsuno et al.
The increasing threat posed by multiresistant bacterial pathogens necessitates the discovery of novel antibacterials with unprecedented modes of action. ADEP1, a natural compound produced by Streptomyces hawaiiensis NRRL 15010, is the prototype for a new class of acyldepsipeptide (ADEP) antibiotics. ADEP antibiotics deregulate the proteolytic core ClpP of the bacterial caseinolytic protease, thereby exhibiting potent antibacterial activity against Gram-positive bacteria, including multiresistant pathogens. ADEP1 and derivatives, here collectively called ADEP, have been previously investigated for their antibiotic potency against different species, structure-activity relationship, and mechanism of action; however, knowledge on the biosynthesis of the natural compound and producer self-resistance have…
Salmonella genomic island 3 (SGI3) was first described as a chromosomal island in Salmonella 4,[5],12:i:-, a monophasic variant of Salmonella enterica subsp. enterica serovar Typhimurium. The SGI3 DNA sequence detected from Salmonella 4,[5],12:i:- isolated in Japan was identical to that of a previously reported one across entire length of 81?kb. SGI3 consists of 86 open reading frames, including a copper homeostasis and silver resistance island (CHASRI) and an arsenic tolerance operon, in addition to genes related to conjugative transfer and DNA replication or partitioning, suggesting that the island is a mobile genetic element. We successfully selected transconjugants that acquired SGI3…
Ciprofloxacin resistance in Salmonella has been increasingly reported due to the emergence and dissemination of multiple Plasmid-Mediated Quinolone Resistance (PMQR) determinants, which are mainly located in non-conjugative plasmids or chromosome. In this study, we aimed to depict the molecular mechanisms underlying the rare phenomenon of horizontal transfer of ciprofloxacin resistance phenotype in Salmonella by conjugation experiments, S1-PFGE and complete plasmid sequencing. Two types of non-conjugative plasmids, namely an IncX1 type carrying a qnrS1 gene, and an IncH1 plasmid carrying the oqxAB-qnrS gene, both ciprofloxacin resistance determinants in Salmonella, were recovered from two Salmonella strains. Importantly, these non-conjugative plasmids could be…
Ceftriaxone and ciprofloxacin are the drugs of choice in treatment of invasive Salmonella infections. This study discovered a novel type of plasmid, pSa44-CIP-CRO, which was recovered from a S. London strain isolated from meat product and comprised genetic determinants that encoded resistance to both ciprofloxacin and ceftriaxone. This plasmid could be resolved into two daughter plasmids and co-exist with such daughter plasmids in a dynamic form in Salmonella; yet it was only present as a single plasmid in Escherichia coli. One daughter plasmid, pSa44-CRO, was found to carry the blaCTX-M-130 gene, which encodes resistance to ceftriaxone, whereas the other plasmid,…
A strain of Nocardia isolated from crude oil-contaminated soils in the Qinghai-Tibetan Plateau degrades nearly all components of crude oil. This strain was identified as Nocardia soli Y48, and its growth conditions were determined. Complete genome sequencing showed that N. soli Y48 has a 7.3?Mb genome and many genes responsible for hydrocarbon degradation, biosurfactant synthesis, emulsification and other hydrocarbon degradation-related metabolisms. Analysis of the clusters of orthologous groups (COGs) and genomic islands (GIs) revealed that Y48 has undergone significant gene transfer events to adapt to changing environmental conditions (crude oil contamination). The structural features of the genome might provide a…
In lichen symbiosis, polyol transfer from green algae is important for acquiring the fungal carbon source. However, the existence of polyol transporter genes and their correlation with lichenization remain unclear. Here, we report candidate polyol transporter genes selected from the genome of the lichen-forming fungus (LFF) Ramalina conduplicans. A phylogenetic analysis using characterized polyol and monosaccharide transporter proteins and hypothetical polyol transporter proteins of R. conduplicans and various ascomycetous fungi suggested that the characterized yeast’ polyol transporters form multiple clades with the polyol transporter-like proteins selected from the diverse ascomycetous taxa. Thus, polyol transporter genes are widely conserved among Ascomycota, regardless…
Staphylococcus lugdunensis is a significant pathogen that causes community-acquired and nosocomial infections. The high prevalence of oxacillin-resistant S. lugdunensis (ORSL) is of major concern. Resistance to ß-lactams is caused by acquisition of the staphylococcal cassette chromosome mec (SCCmec) element. The cassette is highly diverse, both structurally and genetically, among CoNS. Isolates carrying SCCmec II-ST6 are the major persistent clones in hospitals.To investigate the structure and evolutionary origin of a novel type II SCCmec element in an endemic ST6 S. lugdunensis clone.The structure of the SCCmec II element carried by ST6 strain CGMH-SL118 was determined by WGS and compared with those…
Prokaryotic DNA contains three types of methylation: N6-methyladenine, N4-methylcytosine and 5-methylcytosine. The lack of tools to analyse the frequency and distribution of methylated residues in bacterial genomes has prevented a full understanding of their functions. Now, advances in DNA sequencing technology, including single-molecule, real-time sequencing and nanopore-based sequencing, have provided new opportunities for systematic detection of all three forms of methylated DNA at a genome-wide scale and offer unprecedented opportunities for achieving a more complete understanding of bacterial epigenomes. Indeed, as the number of mapped bacterial methylomes approaches 2,000, increasing evidence supports roles for methylation in regulation of gene expression,…
Babesia microti and Babesia duncani are the main causative agents of human babesiosis in the United States. While significant knowledge about B. microti has been gained over the past few years, nothing is known about B. duncani biology, pathogenesis, mode of transmission or sensitivity to currently recommended therapies. Studies in immunocompetent wild type mice and hamsters have shown that unlike B. microti, infection with B. duncani results in severe pathology and ultimately death. The parasite factors involved in B. duncani virulence remain unknown. Here we report the first known completed sequence and annotation of the apicoplast and mitochondrial genomes of…
In 1995 a severe haemolytic-uremic syndrome (HUS) outbreak in Adelaide occurred. A recent genomic analysis of Shiga toxigenic Escherichia coli (STEC) O111:H- strains 95JB1 and 95NR1 from this outbreak found that the more virulent isolate, 95NR1, harboured two additional copies of the Shiga toxin 2 (Stx2) genes encoded within prophage regions. The structure of the Stx2-converting prophages could not be fully resolved using short-read sequence data alone and it was not clear if there were other genomic differences between 95JB1 and 95NR1. In this study we have used Pacific Biosciences (PacBio) single molecule real-time (SMRT) sequencing to characterise the genome…
Ralstonia solanacearum, which causes bacterial wilt in a broad range of plants, is considered a “species complex” due to its significant genetic diversity. Recently, we have isolated a new R. solanacearum strain HA4-1 from Hong’an county in Hubei province of China and identified it being phylotype I, sequevar 14M (phylotype I-14M). Interestingly, we found that it can cause various disease symptoms among different potato genotypes and display different pathogenic behavior compared to a phylogenetically related strain, GMI1000. To dissect the pathogenic mechanisms of HA4-1, we sequenced its whole genome by combined sequencing technologies including Illumina HiSeq2000, PacBio RS II, and…
The phyla Cnidaria, Placozoa, Ctenophora, and Porifera emerged before the split of proto- and deuterostome animals, about 600 million years ago. These early metazoans are interesting, because they can give us important information on the evolution of various tissues and organs, such as eyes and the nervous system. Generally, cnidarians have simple nervous systems, which use neuropeptides for their neurotransmission, but some cnidarian medusae belonging to the class Cubozoa (box jellyfishes) have advanced image-forming eyes, probably associated with a complex innervation. Here, we describe a new transcriptome database from the cubomedusa Tripedalia cystophora.Based on the combined use of the Illumina…
Caulobacter flavus RHGG3T, a novel type species in the genus Caulobacter, originally isolated from rhizosphere soil of watermelon (Citrullus lanatus), has the ability to improve the growth of watermelon seedling and tolerate heavy metals. In vitro, C. flavus RHGG3T was able to solubilize phosphate (80.56 mg L-1), produce indole-3-acetic acid (IAA) (11.58 mg L-1) and was resistant to multiple heavy metals (copper, zinc, cadmium, cobalt and lead). Inoculating watermelon with this strain increased shoot and root length by 22.1% and 43.7%, respectively, and the total number of lateral roots by 55.9% compared to non-inoculated watermelon. In this study, we present the complete…