X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, October 25, 2020

Webinar: PacBio targeted sequencing of long amplicons using PCR or hybrid capture

Targeted sequencing experiments commonly rely on either PCR or hybrid capture to enrich for targets of interest. When using short read sequencing platforms, these amplicons or fragments are frequently targeted to a few hundred base pairs to accommodate the read lengths of the platform. Given PacBio’s long readlength, it is straightforward to sequence amplicons or captured fragments that are multiple kilobases in length. These long sequences are useful for easily visualizing variants that include SNPs, CNVs and other structural variants, often without assembly. We will review methods for the sequencing of long amplicons and provide examples using amplicons that range…

Read More »

Tuesday, April 21, 2020

The landscape of SNCA transcripts across synucleinopathies: New insights from long reads sequencing analysis

Dysregulation of alpha-synuclein expression has been implicated in the pathogenesis of synucleinopathies, in particular Parkinsontextquoterights Disease (PD) and Dementia with Lewy bodies (DLB). Previous studies have shown that the alternatively spliced isoforms of the SNCA gene are differentially expressed in different parts of the brain for PD and DLB patients. Similarly, SNCA isoforms with skipped exons can have a functional impact on the protein domains. The large intronic region of the SNCA gene was also shown to harbor structural variants that affect transcriptional levels. Here we apply the first study of using long read sequencing with targeted capture of both…

Read More »

Tuesday, April 21, 2020

Schizophrenia risk variants influence multiple classes of transcripts of sorting nexin 19 (SNX19).

Genome-wide association studies (GWAS) have identified many genomic loci associated with risk for schizophrenia, but unambiguous identification of the relationship between disease-associated variants and specific genes, and in particular their effect on risk conferring transcripts, has proven difficult. To better understand the specific molecular mechanism(s) at the schizophrenia locus in 11q25, we undertook cis expression quantitative trait loci (cis-eQTL) mapping for this 2 megabase genomic region using postmortem human brain samples. To comprehensively assess the effects of genetic risk upon local expression, we evaluated multiple transcript features: genes, exons, and exon-exon junctions in multiple brain regions-dorsolateral prefrontal cortex (DLPFC), hippocampus,…

Read More »

Tuesday, April 21, 2020

Gammaherpesvirus Readthrough Transcription Generates a Long Non-Coding RNA That Is Regulated by Antisense miRNAs and Correlates with Enhanced Lytic Replication In Vivo.

Gammaherpesviruses, including the human pathogens Epstein?Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV) are oncogenic viruses that establish lifelong infections in hosts and are associated with the development of lymphoproliferative diseases and lymphomas. Recent studies have shown that the majority of the mammalian genome is transcribed and gives rise to numerous long non-coding RNAs (lncRNAs). Likewise, the large double-stranded DNA virus genomes of herpesviruses undergo pervasive transcription, including the expression of many as yet uncharacterized lncRNAs. Murine gammaperherpesvirus 68 (MHV68, MuHV-4, ?HV68) is a natural pathogen of rodents, and is genetically and pathogenically related to EBV and KSHV, providing a…

Read More »

Tuesday, April 21, 2020

Single-Molecule Sequencing: Towards Clinical Applications.

In the past several years, single-molecule sequencing platforms, such as those by Pacific Biosciences and Oxford Nanopore Technologies, have become available to researchers and are currently being tested for clinical applications. They offer exceptionally long reads that permit direct sequencing through regions of the genome inaccessible or difficult to analyze by short-read platforms. This includes disease-causing long repetitive elements, extreme GC content regions, and complex gene loci. Similarly, these platforms enable structural variation characterization at previously unparalleled resolution and direct detection of epigenetic marks in native DNA. Here, we review how these technologies are opening up new clinical avenues that…

Read More »

Tuesday, April 21, 2020

Improved annotation of the domestic pig genome through integration of Iso-Seq and RNA-seq data.

Our understanding of the pig transcriptome is limited. RNA transcript diversity among nine tissues was assessed using poly(A) selected single-molecule long-read isoform sequencing (Iso-seq) and Illumina RNA sequencing (RNA-seq) from a single White cross-bred pig. Across tissues, a total of 67,746 unique transcripts were observed, including 60.5% predicted protein-coding, 36.2% long non-coding RNA and 3.3% nonsense-mediated decay transcripts. On average, 90% of the splice junctions were supported by RNA-seq within tissue. A large proportion (80%) represented novel transcripts, mostly produced by known protein-coding genes (70%), while 17% corresponded to novel genes. On average, four transcripts per known gene (tpg) were…

Read More »

Wednesday, February 26, 2020

A method for the identification of variants in Alzheimer’s disease candidate genes and transcripts using hybridization capture combined with long-read sequencing

Alzheimer’s disease (AD) is a devastating neurodegenerative disease that is genetically complex. Although great progress has been made in identifying fully penetrant mutations in genes such as APP, PSEN1 and PSEN2 that cause early-onset AD, these still represent a very small percentage of AD cases. Large-scale, genome-wide association studies (GWAS) have identified at least 20 additional genetic risk loci for the more common form of late-onset AD. However, the identified SNPs are typically not the actual risk variants, but are in linkage disequilibrium with the presumed causative variant (Van Cauwenberghe C, et al., The genetic landscape of Alzheimer disease: clinical…

Read More »

Wednesday, February 26, 2020

A method for the identification of variants in Alzheimer’s disease candidate genes and transcripts using hybridization capture combined with long-read sequencing

Alzheimer’s disease (AD) is a devastating neurodegenerative disease that is genetically complex. Although great progress has been made in identifying fully penetrant mutations in genes such as APP, PSEN1 and PSEN2 that cause early-onset AD, these still represent a very small percentage of AD cases. Large-scale, genome-wide association studies (GWAS) have identified at least 20 additional genetic risk loci for the more common form of late-onset AD. However, the identified SNPs are typically not the actual causal variants, but are in linkage disequilibrium with the presumed causative variant (Van Cauwenberghe C, et al., The genetic landscape of Alzheimer disease: clinical…

Read More »

Wednesday, February 26, 2020

Screening for causative structural variants in neurological disorders using long-read sequencing

Over the past decades neurological disorders have been extensively studied producing a large number of candidate genomic regions and candidate genes. The SNPs identified in these studies rarely represent the true disease-related functional variants. However, more recently a shift in focus from SNPs to larger structural variants has yielded breakthroughs in our understanding of neurological disorders.Here we have developed candidate gene screening methods that combine enrichment of long DNA fragments with long-read sequencing that is optimized for structural variation discovery. We have also developed a novel, amplification-free enrichment technique using the CRISPR/Cas9 system to target genomic regions.We sequenced gDNA and…

Read More »

Subscribe for blog updates:

Archives