Menu
April 21, 2020  |  

Long-Read Sequencing Emerging in Medical Genetics

The wide implementation of next-generation sequencing (NGS) technologies has revolutionized the field of medical genetics. However, the short read lengths of currently used sequencing approaches pose a limitation for identification of structural variants, sequencing repetitive regions, phasing alleles and distinguishing highly homologous genomic regions. These limitations may significantly contribute to the diagnostic gap in patients with genetic disorders who have undergone standard NGS, like whole exome or even genome sequencing. Now, the emerging long-read sequencing (LRS) technologies may offer improvements in the characterization of genetic variation and regions that are difficult to assess with the currently prevailing NGS approaches. LRS has so far mainly been used to investigate genetic disorders with previously known or strongly suspected disease loci. While these targeted approaches already show the potential of LRS, it remains to be seen whether LRS technologies can soon enable true whole genome sequencing routinely. Ultimately, this could allow the de novo assembly of individual whole genomes used as a generic test for genetic disorders. In this article, we summarize the current LRS-based research on human genetic disorders and discuss the potential of these technologies to facilitate the next major advancements in medical genetics.


April 21, 2020  |  

Comprehensive characterization of T-DNA integration induced chromosomal rearrangement in a birch T-DNA mutant.

Integration of T-DNA into plant genomes via Agrobacterium may interrupt gene structure and generate numerous mutants. The T-DNA caused mutants are valuable materials for understanding T-DNA integration model in plant research. T-DNA integration in plants is complex and still largely unknown. In this work, we reported that multiple T-DNA fragments caused chromosomal translocation and deletion in a birch (Betula platyphylla × B. pendula) T-DNA mutant yl.We performed PacBio genome resequencing for yl and the result revealed that two ends of a T-DNA can be integrated into plant genome independently because the two ends can be linked to different chromosomes and cause chromosomal translocation. We also found that these T-DNA were connected into tandem fragment regardless of direction before integrating into plant genome. In addition, the integration of T-DNA in yl genome also caused several chromosomal fragments deletion. We then summarized three cases for T-DNA integration model in the yl genome. (1) A T-DNA fragment is linked to the two ends of a double-stranded break (DSB); (2) Only one end of a T-DNA fragment is linked to a DSB; (3) A T-DNA fragment is linked to the ends of different DSBs. All the observations in the yl genome supported the DSB repair model.In this study, we showed a comprehensive genome analysis of a T-DNA mutant and provide a new insight into T-DNA integration in plants. These findings would be helpful for the analysis of T-DNA mutants with special phenotypes.


April 21, 2020  |  

MZPAQ: a FASTQ data compression tool.

Due to the technological progress in Next Generation Sequencing (NGS), the amount of genomic data that is produced daily has seen a tremendous increase. This increase has shifted the bottleneck of genomic projects from sequencing to computation and specifically storing, managing and analyzing the large amount of NGS data. Compression tools can reduce the physical storage used to save large amount of genomic data as well as the bandwidth used to transfer this data. Recently, DNA sequence compression has gained much attention among researchers.In this paper, we study different techniques and algorithms used to compress genomic data. Most of these techniques take advantage of some properties that are unique to DNA sequences in order to improve the compression rate, and usually perform better than general-purpose compressors. By exploring the performance of available algorithms, we produce a powerful compression tool for NGS data called MZPAQ. Results show that MZPAQ outperforms state-of-the-art tools on all benchmark datasets obtained from a recent survey in terms of compression ratio. MZPAQ offers the best compression ratios regardless of the sequencing platform or the size of the data.Currently, MZPAQ’s strength is its higher compression ratio as well as its compatibility with all major sequencing platforms. MZPAQ is more suitable when the size of compressed data is crucial, such as long-term storage and data transfer. More efforts will be made in the future to target other aspects such as compression speed and memory utilization.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.