Menu
June 1, 2021  |  

Integrative biology of a fungus: Using PacBio SMRT Sequencing to interrogate the genome, epigenome, and transcriptome of Neurospora crassa.

PacBio SMRT Sequencing has the unique ability to directly detect base modifications in addition to the nucleotide sequence of DNA. Because eukaryotes use base modifications to regulate gene expression, the absence or presence of epigenetic events relative to the location of genes is critical to elucidate the function of the modification. Therefore an integrated approach that combines multiple omic-scale assays is necessary to study complex organisms. Here, we present an integrated analysis of three sequencing experiments: 1) DNA sequencing, 2) base-modification detection, and 3) Iso-seq analysis, in Neurospora crassa, a filamentous fungus that has been used to make many landmark discoveries in biochemistry and genetics. We show that de novo assembly of a new strain yields complete assemblies of entire chromosomes, and additionally contains entire centromeric sequences. Base-modification analyses reveal candidate sites of increased interpulse duration (IPD) ratio, that may signify regions of 5mC, 5hmC, or 6mA base modifications. Iso-seq method provides full-length transcript evidence for comprehensive gene annotation, as well as context to the base-modifications in the newly assembled genome. Projects that integrate multiple genome-wide assays could become common practice for identifying genomic elements and understanding their function in new strains and organisms.


April 21, 2020  |  

RNA sequencing: the teenage years.

Over the past decade, RNA sequencing (RNA-seq) has become an indispensable tool for transcriptome-wide analysis of differential gene expression and differential splicing of mRNAs. However, as next-generation sequencing technologies have developed, so too has RNA-seq. Now, RNA-seq methods are available for studying many different aspects of RNA biology, including single-cell gene expression, translation (the translatome) and RNA structure (the structurome). Exciting new applications are being explored, such as spatial transcriptomics (spatialomics). Together with new long-read and direct RNA-seq technologies and better computational tools for data analysis, innovations in RNA-seq are contributing to a fuller understanding of RNA biology, from questions such as when and where transcription occurs to the folding and intermolecular interactions that govern RNA function.


April 21, 2020  |  

Transcriptomic profiles of 33 opium poppy samples in different tissues, growth phases, and cultivars.

Opium poppy is one of the most important medicinal plants and remains the only commercial resource of morphinan-based painkillers. However, little is known about the regulatory mechanisms involved in benzylisoquinoline alkaloids (BIAs) biosynthesis in opium poppy. Herein, the full-length transcriptome dataset of opium poppy was constructed for the first time in accompanied with the 33 samples of Illumina transcriptome data from different tissues, growth phases and cultivars. The long-read sequencing produced 902,140 raw reads with 55,114 high-quality transcripts, and short-read sequencing produced 1,923,679,864 clean reads with an average Q30 rate of 93%. The high-quality transcripts were subsequently quantified using the short reads, and the expression of each unigene among different samples was calculated as reads per kilobase per million mapped reads (RPKM). These data provide a foundation for opium poppy transcriptomic analysis, which may aid in capturing splice variants and some non-coding RNAs involved in the regulation of BIAs biosynthesis. It can also be used for genome assembly and annotation which will favor in new transcript identification.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.