April 21, 2020  |  

Diversification and Evolution of Vancomycin-Resistant Enterococcus faecium during Intestinal Domination.

Vancomycin-resistant Enterococcus faecium (VRE) is a leading cause of hospital-acquired infections. This is particularly true in immunocompromised patients, where the damage to the microbiota caused by antibiotics can lead to VRE domination of the intestine, increasing a patient’s risk for bloodstream infection. In previous studies we observed that the intestinal domination by VRE of patients hospitalized to receive allogeneic bone marrow transplantation can persist for weeks, but little is known about subspecies diversification and evolution during prolonged domination. Here we combined a longitudinal analysis of patient data and in vivo experiments to reveal previously unappreciated subspecies dynamics during VRE domination that appeared to be stable from 16S rRNA microbiota analyses. Whole-genome sequencing of isolates obtained from sequential stool samples provided by VRE-dominated patients revealed an unanticipated level of VRE population complexity that evolved over time. In experiments with ampicillin-treated mice colonized with a single CFU, VRE rapidly diversified and expanded into distinct lineages that competed for dominance. Mathematical modeling shows that in vivo evolution follows mostly a parabolic fitness landscape, where each new mutation provides diminishing returns and, in the setting of continuous ampicillin treatment, reveals a fitness advantage for mutations in penicillin-binding protein 5 (pbp5) that increase resistance to ampicillin. Our results reveal the rapid diversification of host-colonizing VRE populations, with implications for epidemiologic tracking of in-hospital VRE transmission and susceptibility to antibiotic treatment.Copyright © 2019 Dubin et al.

April 21, 2020  |  

Multiple modes of convergent adaptation in the spread of glyphosate-resistant Amaranthus tuberculatus.

The selection pressure exerted by herbicides has led to the repeated evolution of herbicide resistance in weeds. The evolution of herbicide resistance on contemporary timescales in turn provides an outstanding opportunity to investigate key questions about the genetics of adaptation, in particular the relative importance of adaptation from new mutations, standing genetic variation, or geographic spread of adaptive alleles through gene flow. Glyphosate-resistant Amaranthus tuberculatus poses one of the most significant threats to crop yields in the Midwestern United States, with both agricultural populations and herbicide resistance only recently emerging in Canada. To understand the evolutionary mechanisms driving the spread of resistance, we sequenced and assembled the A. tuberculatus genome and investigated the origins and population genomics of 163 resequenced glyphosate-resistant and susceptible individuals from Canada and the United States. In Canada, we discovered multiple modes of convergent evolution: in one locality, resistance appears to have evolved through introductions of preadapted US genotypes, while in another, there is evidence for the independent evolution of resistance on genomic backgrounds that are historically nonagricultural. Moreover, resistance on these local, nonagricultural backgrounds appears to have occurred predominantly through the partial sweep of a single haplotype. In contrast, resistant haplotypes arising from the Midwestern United States show multiple amplification haplotypes segregating both between and within populations. Therefore, while the remarkable species-wide diversity of A. tuberculatus has facilitated geographic parallel adaptation of glyphosate resistance, more recently established agricultural populations are limited to adaptation in a more mutation-limited framework.Copyright © 2019 the Author(s). Published by PNAS.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.