Menu
July 7, 2019  |  

Genome assembly of Chryseobacterium polytrichastri ERMR1:04, a psychrotolerant bacterium with cold active proteases, isolated from East Rathong Glacier in India.

We report here the genome assembly of a psychrotolerant bacterium, Chryseobacterium polytrichastri ERMR1:04, which secretes cold-active proteases. The bacterium was isolated from a pristine location, the East Rathong Glacier in the Sikkim Himalaya. The 5.53-Mb genome provides insight into the cold-active industrial enzyme and adaptation in the cold environment. Copyright © 2015 Kumar et al.


July 7, 2019  |  

Evaluation and validation of assembling corrected PacBio long reads for microbial genome completion via hybrid approaches.

Despite the ever-increasing output of next-generation sequencing data along with developing assemblers, dozens to hundreds of gaps still exist in de novo microbial assemblies due to uneven coverage and large genomic repeats. Third-generation single-molecule, real-time (SMRT) sequencing technology avoids amplification artifacts and generates kilobase-long reads with the potential to complete microbial genome assembly. However, due to the low accuracy (~85%) of third-generation sequences, a considerable amount of long reads (>50X) are required for self-correction and for subsequent de novo assembly. Recently-developed hybrid approaches, using next-generation sequencing data and as few as 5X long reads, have been proposed to improve the completeness of microbial assembly. In this study we have evaluated the contemporary hybrid approaches and demonstrated that assembling corrected long reads (by runCA) produced the best assembly compared to long-read scaffolding (e.g., AHA, Cerulean and SSPACE-LongRead) and gap-filling (SPAdes). For generating corrected long reads, we further examined long-read correction tools, such as ECTools, LSC, LoRDEC, PBcR pipeline and proovread. We have demonstrated that three microbial genomes including Escherichia coli K12 MG1655, Meiothermus ruber DSM1279 and Pdeobacter heparinus DSM2366 were successfully hybrid assembled by runCA into near-perfect assemblies using ECTools-corrected long reads. In addition, we developed a tool, Patch, which implements corrected long reads and pre-assembled contigs as inputs, to enhance microbial genome assemblies. With the additional 20X long reads, short reads of S. cerevisiae W303 were hybrid assembled into 115 contigs using the verified strategy, ECTools + runCA. Patch was subsequently applied to upgrade the assembly to a 35-contig draft genome. Our evaluation of the hybrid approaches shows that assembling the ECTools-corrected long reads via runCA generates near complete microbial genomes, suggesting that genome assembly could benefit from re-analyzing the available hybrid datasets that were not assembled in an optimal fashion.


July 7, 2019  |  

Next-generation sequencing and comparative analysis of sequential outbreaks caused by multidrug-resistant Acinetobacter baumannii at a large academic burn center.

Next-generation sequencing (NGS) analysis has emerged as a promising molecular epidemiological method for investigating health care-associated outbreaks. Here, we used NGS to investigate a 3-year outbreak of multidrug-resistant Acinetobacter baumannii (MDRAB) at a large academic burn center. A reference genome from the index case was generated using de novo assembly of PacBio reads. Forty-six MDRAB isolates were analyzed by pulsed-field gel electrophoresis (PFGE) and sequenced using an Illumina platform. After mapping to the index case reference genome, four samples were excluded due to low coverage, leaving 42 samples for further analysis. Multilocus sequence types (MLST) and the presence of acquired resistance genes were also determined from the sequencing data. A transmission network was inferred from genomic and epidemiological data using a Bayesian framework. Based on single-nucleotide variant (SNV) differences, this MDRAB outbreak represented three sequential outbreaks caused by distinct clones. The first and second outbreaks were caused by sequence type 2 (ST2), while the third outbreak was caused by ST79. For the second outbreak, the MLST and PFGE results were discordant. However, NGS-based SNV typing detected a recombination event and consequently enabled a more accurate phylogenetic analysis. The distribution of resistance genes varied among the three outbreaks. The first- and second-outbreak strains possessed a blaOXA-23-like group, while the third-outbreak strains harbored a blaOXA-40-like group. NGS-based analysis demonstrated the superior resolution of outbreak transmission networks for MDRAB and provided insight into the mechanisms of strain diversification between sequential outbreaks through recombination. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Improved draft genome sequence of Clostridium pasteurianum strain ATCC 6013 (DSM 525) using a hybrid next-generation sequencing approach.

We present an improved draft genome sequence for Clostridium pasteurianum strain ATCC 6013 (DSM 525), the type strain of the species and an important solventogenic bacterium with industrial potential. Availability of a near-complete genome sequence will enable strain engineering of this promising bacterium. Copyright © 2014 Pyne et al.


July 7, 2019  |  

Genome sequence of Pseudomonas sp. strain P482, a tomato rhizosphere isolate with broad-spectrum antimicrobial activity.

The tomato rhizosphere isolate Pseudomonas sp. strain P482 is a member of a diverse group of fluorescent pseudomonads. P482 produces a yet unidentified broad-spectrum antimicrobial compound(s), active inter alia (i.a.) against Dickeya spp. Here, we present a nearly complete genome of P482 obtained by a hybrid assembly of Illumina and PacBio sequencing data. Copyright © 2014 Krzyzanowska et al.


July 7, 2019  |  

SSPACE-LongRead: scaffolding bacterial draft genomes using long read sequence information.

The recent introduction of the Pacific Biosciences RS single molecule sequencing technology has opened new doors to scaffolding genome assemblies in a cost-effective manner. The long read sequence information is promised to enhance the quality of incomplete and inaccurate draft assemblies constructed from Next Generation Sequencing (NGS) data.Here we propose a novel hybrid assembly methodology that aims to scaffold pre-assembled contigs in an iterative manner using PacBio RS long read information as a backbone. On a test set comprising six bacterial draft genomes, assembled using either a single Illumina MiSeq or Roche 454 library, we show that even a 50× coverage of uncorrected PacBio RS long reads is sufficient to drastically reduce the number of contigs. Comparisons to the AHA scaffolder indicate our strategy is better capable of producing (nearly) complete bacterial genomes.The current work describes our SSPACE-LongRead software which is designed to upgrade incomplete draft genomes using single molecule sequences. We conclude that the recent advances of the PacBio sequencing technology and chemistry, in combination with the limited computational resources required to run our program, allow to scaffold genomes in a fast and reliable manner.


July 7, 2019  |  

Seeking the source of Pseudomonas aeruginosa infections in a recently opened hospital: an observational study using whole-genome sequencing.

Pseudomonas aeruginosa is a common nosocomial pathogen responsible for significant morbidity and mortality internationally. Patients may become colonised or infected with P. aeruginosa after exposure to contaminated sources within the hospital environment. The aim of this study was to determine whether whole-genome sequencing (WGS) can be used to determine the source in a cohort of burns patients at high risk of P. aeruginosa acquisition.An observational prospective cohort study.Burns care ward and critical care ward in the UK.Patients with >7% total burns by surface area were recruited into the study.All patients were screened for P. aeruginosa on admission and samples taken from their immediate environment, including water. Screening patients who subsequently developed a positive P. aeruginosa microbiology result were subject to enhanced environmental surveillance. All isolates of P. aeruginosa were genome sequenced. Sequence analysis looked at similarity and relatedness between isolates.WGS for 141 P. aeruginosa isolates were obtained from patients, hospital water and the ward environment. Phylogenetic analysis revealed eight distinct clades, with a single clade representing the majority of environmental isolates in the burns unit. Isolates from three patients had identical genotypes compared with water isolates from the same room. There was clear clustering of water isolates by room and outlet, allowing the source of acquisitions to be unambiguously identified. Whole-genome shotgun sequencing of biofilm DNA extracted from a thermostatic mixer valve revealed this was the source of a P. aeruginosa subpopulation previously detected in water. In the remaining two cases there was no clear link to the hospital environment.This study reveals that WGS can be used for source tracking of P. aeruginosa in a hospital setting, and that acquisitions can be traced to a specific source within a hospital ward. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.


July 7, 2019  |  

Genome sequencing of an extended series of NDM-producing Klebsiella pneumoniae isolates from Neonatal infections in a Nepali hospital characterizes the extent of community- versus hospital-associated transmission in an endemic setting.

NDM-producing Klebsiella pneumoniae strains represent major clinical and infection control challenges, particularly in resource-limited settings with high rates of antimicrobial resistance. Determining whether transmission occurs at a gene, plasmid, or bacterial strain level and within hospital and/or the community has implications for monitoring and controlling spread. Whole-genome sequencing (WGS) is the highest-resolution typing method available for transmission epidemiology. We sequenced carbapenem-resistant K. pneumoniae isolates from 26 individuals involved in several infection case clusters in a Nepali neonatal unit and 68 other clinical Gram-negative isolates from a similar time frame, using Illumina and PacBio technologies. Within-outbreak chromosomal and closed-plasmid structures were generated and used as data set-specific references. Three temporally separated case clusters were caused by a single NDM K. pneumoniae strain with a conserved set of four plasmids, one being a 304,526-bp plasmid carrying blaNDM-1. The plasmids contained a large number of antimicrobial/heavy metal resistance and plasmid maintenance genes, which may have explained their persistence. No obvious environmental/human reservoir was found. There was no evidence of transmission of outbreak plasmids to other Gram-negative clinical isolates, although blaNDM variants were present in other isolates in different genetic contexts. WGS can effectively define complex antimicrobial resistance epidemiology. Wider sampling frames are required to contextualize outbreaks. Infection control may be effective in terminating outbreaks caused by particular strains, even in areas with widespread resistance, although this study could not demonstrate evidence supporting specific interventions. Larger, detailed studies are needed to characterize resistance genes, vectors, and host strains involved in disease, to enable effective intervention. Copyright © 2014 Stoesser et al.


July 7, 2019  |  

The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader.

Anaerobic gut fungi represent a distinct early-branching fungal phylum (Neocallimastigomycota) and reside in the rumen, hindgut, and feces of ruminant and nonruminant herbivores. The genome of an anaerobic fungal isolate, Orpinomyces sp. strain C1A, was sequenced using a combination of Illumina and PacBio single-molecule real-time (SMRT) technologies. The large genome (100.95 Mb, 16,347 genes) displayed extremely low G+C content (17.0%), large noncoding intergenic regions (73.1%), proliferation of microsatellite repeats (4.9%), and multiple gene duplications. Comparative genomic analysis identified multiple genes and pathways that are absent in Dikarya genomes but present in early-branching fungal lineages and/or nonfungal Opisthokonta. These included genes for posttranslational fucosylation, the production of specific intramembrane proteases and extracellular protease inhibitors, the formation of a complete axoneme and intraflagellar trafficking machinery, and a near-complete focal adhesion machinery. Analysis of the lignocellulolytic machinery in the C1A genome revealed an extremely rich repertoire, with evidence of horizontal gene acquisition from multiple bacterial lineages. Experimental analysis indicated that strain C1A is a remarkable biomass degrader, capable of simultaneous saccharification and fermentation of the cellulosic and hemicellulosic fractions in multiple untreated grasses and crop residues examined, with the process significantly enhanced by mild pretreatments. This capability, acquired during its separate evolutionary trajectory in the rumen, along with its resilience and invasiveness compared to prokaryotic anaerobes, renders anaerobic fungi promising agents for consolidated bioprocessing schemes in biofuels production.


July 7, 2019  |  

A gapless genome sequence of the fungus Botrytis cinerea.

Following earlier incomplete and fragmented versions of a genome sequence for the grey mould Botrytis cinerea, we here report a gapless, near-finished genome sequence for B. cinerea strain B05.10. The assembly comprises 18 chromosomes and was confirmed by an optical map and a genetic map based on ~75 000 SNP markers. All chromosomes contain fully assembled centromeric regions, and 10 chromosomes have telomeres on both ends. The genetic map consisted of 4153 cM and comparison of genetic distances with the physical distances identified 40 recombination hotspots. The linkage map also identified two mutations, located in the previously described genes Bos1 and BcsdhB, that confer resistance to the fungicides boscalid and iprodione. The genome was predicted to encode 11 701 proteins. RNAseq data from >20 different samples were used to validate and improve gene models. Manual curation of chromosome 1 revealed interesting features, such as the occurrence of a dicistronic transcript and fully overlapping genes in opposite orientations, as well as many spliced antisense transcripts. Manual curation also revealed that UTRs of genes can be complex and long, with many UTRs exceeding lengths of 1 kb and possessing multiple introns. Community annotation is in progress. This article is protected by copyright. All rights reserved. © 2016 BSPP AND JOHN WILEY & SONS LTD.


July 7, 2019  |  

Whole genome sequencing analysis of the cutaneous pathogenic yeast Malassezia restricta and identification of the major lipase expressed on the scalp of patients with dandruff.

Malassezia species are opportunistic pathogenic fungi that are frequently associated with seborrhoeic dermatitis, including dandruff. Most Malassezia species are lipid dependent, a property that is compensated by breaking down host sebum into fatty acids by lipases. In this study, we aimed to sequence and analyse the whole genome of Malassezia restricta KCTC 27527, a clinical isolate from a Korean patient with severe dandruff, to search for lipase orthologues and identify the lipase that is the most frequently expressed on the scalp of patients with dandruff. The genome of M. restricta KCTC 27527 was sequenced using the Illumina MiSeq and PacBio platforms. Lipase orthologues were identified by comparison with known lipase genes in the genomes of Malassezia globosa and Malassezia sympodialis. The expression of the identified lipase genes was directly evaluated in swab samples from the scalps of 56 patients with dandruff. We found that, among the identified lipase-encoding genes, the gene encoding lipase homolog MRES_03670, named LIP5 in this study, was the most frequently expressed lipase in the swab samples. Our study provides an overview of the genome of a clinical isolate of M. restricta and fundamental information for elucidating the role of lipases during fungus-host interaction.© 2016 Blackwell Verlag GmbH.


July 7, 2019  |  

Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus.

The Southern Ocean houses a diverse and productive community of organisms. Unicellular eukaryotic diatoms are the main primary producers in this environment, where photosynthesis is limited by low concentrations of dissolved iron and large seasonal fluctuations in light, temperature and the extent of sea ice. How diatoms have adapted to this extreme environment is largely unknown. Here we present insights into the genome evolution of a cold-adapted diatom from the Southern Ocean, Fragilariopsis cylindrus, based on a comparison with temperate diatoms. We find that approximately 24.7 per cent of the diploid F. cylindrus genome consists of genetic loci with alleles that are highly divergent (15.1 megabases of the total genome size of 61.1 megabases). These divergent alleles were differentially expressed across environmental conditions, including darkness, low iron, freezing, elevated temperature and increased CO2. Alleles with the largest ratio of non-synonymous to synonymous nucleotide substitutions also show the most pronounced condition-dependent expression, suggesting a correlation between diversifying selection and allelic differentiation. Divergent alleles may be involved in adaptation to environmental fluctuations in the Southern Ocean.


July 7, 2019  |  

Resequencing and annotation of the Nostoc punctiforme ATTC 29133 genome: facilitating biofuel and high-value chemical production.

Cyanobacteria have the potential to produce bulk and fine chemicals and members belonging to Nostoc sp. have received particular attention due to their relatively fast growth rate and the relative ease with which they can be harvested. Nostoc punctiforme is an aerobic, motile, Gram-negative, filamentous cyanobacterium that has been studied intensively to enhance our understanding of microbial carbon and nitrogen fixation. The genome of the type strain N. punctiforme ATCC 29133 was sequenced in 2001 and the scientific community has used these genome data extensively since then. Advances in bioinformatics tools for sequence annotation and the importance of this organism prompted us to resequence and reanalyze its genome and to make both, the initial and improved annotation, available to the scientific community. The new draft genome has a total size of 9.1 Mbp and consists of 65 contiguous pieces of DNA with a GC content of 41.38% and 7664 protein-coding genes. Furthermore, the resequenced genome is slightly (5152 bp) larger and contains 987 more genes with functional prediction when compared to the previously published version. We deposited the annotation of both genomes in the Department of Energy’s IMG database to facilitate easy genome exploration by the scientific community without the need of in-depth bioinformatics skills. We expect that an facilitated access and ability to search the N. punctiforme ATCC 29133 for genes of interest will significantly facilitate metabolic engineering and genome prospecting efforts and ultimately the synthesis of biofuels and natural products from this keystone organism and closely related cyanobacteria.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.