June 1, 2021  |  

Complete microbial genomes, epigenomes, and transcriptomes using long-read PacBio Sequencing.

For comprehensive metabolic reconstructions and a resulting understanding of the pathways leading to natural products, it is desirable to obtain complete information about the genetic blueprint of the organisms used. Traditional Sanger and next-generation, short-read sequencing technologies have shortcomings with respect to read lengths and DNA-sequence context bias, leading to fragmented and incomplete genome information. The development of long-read, single molecule, real-time (SMRT) DNA sequencing from Pacific Biosciences, with >10,000 bp average read lengths and a lack of sequence context bias, now allows for the generation of complete genomes in a fully automated workflow. In addition to the genome sequence, DNA methylation is characterized in the process of sequencing. PacBio® sequencing has also been applied to microbial transcriptomes. Long reads enable sequencing of full-length cDNAs allowing for identification of complete gene and operon sequences without the need for transcript assembly. We will highlight several examples where these capabilities have been leveraged in the areas of industrial microbiology, including biocommodities, biofuels, bioremediation, new bacteria with potential commercial applications, antibiotic discovery, and livestock/plant microbiome interactions.

April 21, 2020  |  

A microbial factory for defensive kahalalides in a tripartite marine symbiosis.

Chemical defense against predators is widespread in natural ecosystems. Occasionally, taxonomically distant organisms share the same defense chemical. Here, we describe an unusual tripartite marine symbiosis, in which an intracellular bacterial symbiont (“Candidatus Endobryopsis kahalalidefaciens”) uses a diverse array of biosynthetic enzymes to convert simple substrates into a library of complex molecules (the kahalalides) for chemical defense of the host, the alga Bryopsis sp., against predation. The kahalalides are subsequently hijacked by a third partner, the herbivorous mollusk Elysia rufescens, and employed similarly for defense. “Ca E. kahalalidefaciens” has lost many essential traits for free living and acts as a factory for kahalalide production. This interaction between a bacterium, an alga, and an animal highlights the importance of chemical defense in the evolution of complex symbioses.Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

April 21, 2020  |  

Draft Genome Sequence of Streptomyces sp. Strain RKND-216, an Antibiotic Producer Isolated from Marine Sediment in Prince Edward Island, Canada.

Streptomyces sp. strain RKND-216 was isolated from marine sediment collected in Prince Edward Island, Canada, and produces a putatively novel bioactive natural product with antitubercular activity. The genome assembly consists of two contigs covering 5.61?Mb. Genome annotation identified 4,618 predicted protein-coding sequences and 19 predicted natural product biosynthetic gene clusters.Copyright © 2019 Liang et al.

April 21, 2020  |  

The ADEP Biosynthetic Gene Cluster in Streptomyces hawaiiensis NRRL 15010 Reveals an Accessory clpP Gene as a Novel Antibiotic Resistance Factor.

The increasing threat posed by multiresistant bacterial pathogens necessitates the discovery of novel antibacterials with unprecedented modes of action. ADEP1, a natural compound produced by Streptomyces hawaiiensis NRRL 15010, is the prototype for a new class of acyldepsipeptide (ADEP) antibiotics. ADEP antibiotics deregulate the proteolytic core ClpP of the bacterial caseinolytic protease, thereby exhibiting potent antibacterial activity against Gram-positive bacteria, including multiresistant pathogens. ADEP1 and derivatives, here collectively called ADEP, have been previously investigated for their antibiotic potency against different species, structure-activity relationship, and mechanism of action; however, knowledge on the biosynthesis of the natural compound and producer self-resistance have remained elusive. In this study, we identified and analyzed the ADEP biosynthetic gene cluster in S. hawaiiensis NRRL 15010, which comprises two NRPSs, genes necessary for the biosynthesis of (4S,2R)-4-methylproline, and a type II polyketide synthase (PKS) for the assembly of highly reduced polyenes. While no resistance factor could be identified within the gene cluster itself, we discovered an additional clpP homologous gene (named clpPADEP) located further downstream of the biosynthetic genes, separated from the biosynthetic gene cluster by several transposable elements. Heterologous expression of ClpPADEP in three ADEP-sensitive Streptomyces species proved its role in conferring ADEP resistance, thereby revealing a novel type of antibiotic resistance determinant.IMPORTANCE Antibiotic acyldepsipeptides (ADEPs) represent a promising new class of potent antibiotics and, at the same time, are valuable tools to study the molecular functioning of their target, ClpP, the proteolytic core of the bacterial caseinolytic protease. Here, we present a straightforward purification procedure for ADEP1 that yields substantial amounts of the pure compound in a time- and cost-efficient manner, which is a prerequisite to conveniently study the antimicrobial effects of ADEP and the operating mode of bacterial ClpP machineries in diverse bacteria. Identification and characterization of the ADEP biosynthetic gene cluster in Streptomyces hawaiiensis NRRL 15010 enables future bioinformatics screenings for similar gene clusters and/or subclusters to find novel natural compounds with specific substructures. Most strikingly, we identified a cluster-associated clpP homolog (named clpPADEP) as an ADEP resistance gene. ClpPADEP constitutes a novel bacterial resistance factor that alone is necessary and sufficient to confer high-level ADEP resistance to Streptomyces across species.Copyright © 2019 American Society for Microbiology.

April 21, 2020  |  

Harnessing long-read amplicon sequencing to uncover NRPS and Type I PKS gene sequence diversity in polar desert soils.

The severity of environmental conditions at Earth’s frigid zones present attractive opportunities for microbial biomining due to their heightened potential as reservoirs for novel secondary metabolites. Arid soil microbiomes within the Antarctic and Arctic circles are remarkably rich in Actinobacteria and Proteobacteria, bacterial phyla known to be prolific producers of natural products. Yet the diversity of secondary metabolite genes within these cold, extreme environments remain largely unknown. Here, we employed amplicon sequencing using PacBio RS II, a third generation long-read platform, to survey over 200 soils spanning twelve east Antarctic and high Arctic sites for natural product-encoding genes, specifically targeting non-ribosomal peptides (NRPS) and Type I polyketides (PKS). NRPS-encoding genes were more widespread across the Antarctic, whereas PKS genes were only recoverable from a handful of sites. Many recovered sequences were deemed novel due to their low amino acid sequence similarity to known protein sequences, particularly throughout the east Antarctic sites. Phylogenetic analysis revealed that a high proportion were most similar to antifungal and biosurfactant-type clusters. Multivariate analysis showed that soil fertility factors of carbon, nitrogen and moisture displayed significant negative relationships with natural product gene richness. Our combined results suggest that secondary metabolite production is likely to play an important physiological component of survival for microorganisms inhabiting arid, nutrient-starved soils. © FEMS 2019.

April 21, 2020  |  

A hybrid de novo assembly of the sea pansy (Renilla muelleri) genome.

More than 3,000 species of octocorals (Cnidaria, Anthozoa) inhabit an expansive range of environments, from shallow tropical seas to the deep-ocean floor. They are important foundation species that create coral “forests,” which provide unique niches and 3-dimensional living space for other organisms. The octocoral genus Renilla inhabits sandy, continental shelves in the subtropical and tropical Atlantic and eastern Pacific Oceans. Renilla is especially interesting because it produces secondary metabolites for defense, exhibits bioluminescence, and produces a luciferase that is widely used in dual-reporter assays in molecular biology. Although several anthozoan genomes are currently available, the majority of these are hexacorals. Here, we present a de novo assembly of an azooxanthellate shallow-water octocoral, Renilla muelleri.We generated a hybrid de novo assembly using MaSuRCA v.3.2.6. The final assembly included 4,825 scaffolds and a haploid genome size of 172 megabases (Mb). A BUSCO assessment found 88% of metazoan orthologs present in the genome. An Augustus ab initio gene prediction found 23,660 genes, of which 66% (15,635) had detectable similarity to annotated genes from the starlet sea anemone, Nematostella vectensis, or to the Uniprot database. Although the R. muelleri genome may be smaller (172 Mb minimum size) than other publicly available coral genomes (256-448 Mb), the R. muelleri genome is similar to other coral genomes in terms of the number of complete metazoan BUSCOs and predicted gene models.The R. muelleri hybrid genome provides a novel resource for researchers to investigate the evolution of genes and gene families within Octocorallia and more widely across Anthozoa. It will be a key resource for future comparative genomics with other corals and for understanding the genomic basis of coral diversity. © The Author(s) 2019. Published by Oxford University Press.

April 21, 2020  |  

A chromosomal-scale genome assembly of Tectona grandis reveals the importance of tandem gene duplication and enables discovery of genes in natural product biosynthetic pathways.

Teak, a member of the Lamiaceae family, produces one of the most expensive hardwoods in the world. High demand coupled with deforestation have caused a decrease in natural teak forests, and future supplies will be reliant on teak plantations. Hence, selection of teak tree varieties for clonal propagation with superior growth performance is of great importance, and access to high-quality genetic and genomic resources can accelerate the selection process by identifying genes underlying desired traits.To facilitate teak research and variety improvement, we generated a highly contiguous, chromosomal-scale genome assembly using high-coverage Pacific Biosciences long reads coupled with high-throughput chromatin conformation capture. Of the 18 teak chromosomes, we generated 17 near-complete pseudomolecules with one chromosome present as two chromosome arm scaffolds. Genome annotation yielded 31,168 genes encoding 46,826 gene models, of which, 39,930 and 41,155 had Pfam domain and expression evidence, respectively. We identified 14 clusters of tandem-duplicated terpene synthases (TPSs), genes central to the biosynthesis of terpenes, which are involved in plant defense and pollinator attraction. Transcriptome analysis revealed 10 TPSs highly expressed in woody tissues, of which, 8 were in tandem, revealing the importance of resolving tandemly duplicated genes and the quality of the assembly and annotation. We also validated the enzymatic activity of four TPSs to demonstrate the function of key TPSs.In summary, this high-quality chromosomal-scale assembly and functional annotation of the teak genome will facilitate the discovery of candidate genes related to traits critical for sustainable production of teak and for anti-insecticidal natural products. © The Author(s) 2019. Published by Oxford University Press.

April 21, 2020  |  

Comparative genomic analysis of eight novel haloalkaliphilic bacteriophages from Lake Elmenteita, Kenya.

We report complete genome sequences of eight bacteriophages isolated from Haloalkaline Lake Elmenteita found on the floor of Kenyan Rift Valley. The bacteriophages were sequenced, annotated and a comparative genomic analysis using various Bioinformatics tools carried out to determine relatedness of the bacteriophages to each other, and to those in public databases. Basic genome properties like genome size, percentage coding density, number of open reading frames, percentage GC content and gene organizations revealed the bacteriophages had no relationship to each other. Comparison to other nucleotide sequences in GenBank database showed no significant similarities hence novel. At the amino acid level, phages of our study revealed mosaicism to genes with conserved domains to already described phages. Phylogenetic analyses of large terminase gene responsible for DNA packaging and DNA polymerase gene for replication further showed diversity among the bacteriophages. Our results give insight into diversity of bacteriophages in Lake Elmenteita and provide information on their evolution. By providing primary sequence information, this study not only provides novel sequences for biotechnological exploitation, but also sets stage for future studies aimed at better understanding of virus diversity and genomes from haloalkaline lakes in the Rift Valley.

April 21, 2020  |  

FadR1, a pathway-specific activator of fidaxomicin biosynthesis in Actinoplanes deccanensis Yp-1.

Fidaxomicin, an 18-membered macrolide antibiotic, is highly active against Clostridium difficile, the most common cause of diarrhea in hospitalized patients. Though the biosynthetic mechanism of fidaxomicin has been well studied, little is known about its regulatory mechanism. Here, we reported that FadR1, a LAL family transcriptional regulator in the fidaxomicin cluster of Actinoplanes deccanensis Yp-1, acts as an activator for fidaxomicin biosynthesis. The disruption of fadR1 abolished the ability to synthesize fidaxomicin, and production could be restored by reintegrating a single copy of fadR1. Overexpression of fadR1 resulted in an approximately 400 % improvement in fidaxomicin production. Electrophoretic mobility shift assays indicated that fidaxomicin biosynthesis is under the control of FadR1 through its binding to the promoter regions of fadM, fadA1-fadP2, fadS2-fadC, and fadE-fadF, respectively. And the conserved binding sites of FadR1 within the four promoter regions were determined by footprinting experiment. All results indicated that fadR1 encodes a pathway-specific positive regulator of fidaxomicin biosynthesis and upregulates the transcription levels of most of genes by binding to the four above intergenic regions. In summary, we not only clearly elucidate the regulatory mechanism of FadR1 but also provide strategies for the construction of industrial high-yield strain of fidaxomicin.

April 21, 2020  |  

Genetic variation in the conjugative plasmidome of a hospital effluent multidrug resistant Escherichia coli strain.

Bacteria harboring conjugative plasmids have the potential for spreading antibiotic resistance through horizontal gene transfer. It is described that the selection and dissemination of antibiotic resistance is enhanced by stressors, like metals or antibiotics, which can occur as environmental contaminants. This study aimed at unveiling the composition of the conjugative plasmidome of a hospital effluent multidrug resistant Escherichia coli strain (H1FC54) under different mating conditions. To meet this objective, plasmid pulsed field gel electrophoresis, optical mapping analyses and DNA sequencing were used in combination with phenotype analysis. Strain H1FC54 was observed to harbor five plasmids, three of which were conjugative and two of these, pH1FC54_330 and pH1FC54_140, contained metal and antibiotic resistance genes. Transconjugants obtained in the absence or presence of tellurite (0.5?µM or 5?µM), arsenite (0.5?µM, 5?µM or 15?µM) or ceftazidime (10?mg/L) and selected in the presence of sodium azide (100?mg/L) and tetracycline (16?mg/L) presented distinct phenotypes, associated with the acquisition of different plasmid combinations, including two co-integrate plasmids, of 310 kbp and 517 kbp. The variable composition of the conjugative plasmidome, the formation of co-integrates during conjugation, as well as the transfer of non-transferable plasmids via co-integration, and the possible association between antibiotic, arsenite and tellurite tolerance was demonstrated. These evidences bring interesting insights into the comprehension of the molecular and physiological mechanisms that underlie antibiotic resistance propagation in the environment. Copyright © 2019 Elsevier Ltd. All rights reserved.

April 21, 2020  |  

Complete genome sequence of Streptomyces spongiicola HNM0071T, a marine sponge-associated actinomycete producing staurosporine and echinomycin

Streptomyes spongiicola HNM0071T is a novel marine sponge-associated actinomycete with potential to produce antitumor agents including staurosporine and echinomycin. Here, we present the complete genome sequence of S. spongiicola HNM0071, which consists of a linear chromosome of 7,180,417?bp, 5669 protein coding genes, 18 rRNA genes, and 66 tRNA genes. Twenty-seven putative secondary metabolite biosynthetic gene clusters were found in the genome. Among them, the staurosporine and echinomycin gene clusters have been described completely. The complete genome information presented here will enable us to investigate the biosynthetic mechanism of two well-known antitumor antibiotics and to discover novel secondary metabolites with potential antitumor activities.

April 21, 2020  |  

Whole genome sequence of Auricularia heimuer (Basidiomycota, Fungi), the third most important cultivated mushroom worldwide.

Heimuer, Auricularia heimuer, is one of the most famous traditional Chinese foods and medicines, and it is the third most important cultivated mushroom worldwide. The aim of this study is to develop genomic resources for A. heimuer to furnish tools that can be used to study its secondary metabolite production capability, wood degradation ability and biosynthesis of polysaccharides. The genome was obtained from single spore mycelia of the strain Dai 13782 by using combined high-throughput Illumina HiSeq 4000 system with the PacBio RSII long-read sequencing platform. Functional annotation was accomplished by blasting protein sequences with different public available databases to obtain their corresponding annotations. It is 49.76Mb in size with a N50 scaffold size of 1,350,668bp and encodes 16,244 putative predicted genes. This is the first genome-scale assembly and annotation for A. heimuer, which is the third sequenced species in Auricularia. Copyright © 2018 Elsevier Inc. All rights reserved.

April 21, 2020  |  

Function and Distribution of a Lantipeptide in Strawberry Fusarium Wilt Disease-Suppressive Soils.

Streptomyces griseus S4-7 is representative of strains responsible for the specific soil suppressiveness of Fusarium wilt of strawberry caused by Fusarium oxysporum f. sp. fragariae. Members of the genus Streptomyces secrete diverse secondary metabolites including lantipeptides, heat-stable lanthionine-containing compounds that can exhibit antibiotic activity. In this study, a class II lantipeptide provisionally named grisin, of previously unknown biological function, was shown to inhibit F. oxysporum. The inhibitory activity of grisin distinguishes it from other class II lantipeptides from Streptomyces spp. Results of quantitative reverse transcription-polymerase chain reaction with lanM-specific primers showed that the density of grisin-producing Streptomyces spp. in the rhizosphere of strawberry was positively correlated with the number of years of monoculture and a minimum of seven years was required for development of specific soil suppressiveness to Fusarium wilt disease. We suggest that lanM can be used as a diagnostic marker of whether a soil is conducive or suppressive to the disease.

April 21, 2020  |  

Natural product drug discovery in the genomic era: realities, conjectures, misconceptions, and opportunities.

Natural product discovery from microorganisms provided important sources for antibiotics, anti-cancer agents, immune-modulators, anthelminthic agents, and insecticides during a span of 50 years starting in the 1940s, then became less productive because of rediscovery issues, low throughput, and lack of relevant new technologies to unveil less abundant or not easily detected drug-like natural products. In the early 2000s, it was observed from genome sequencing that Streptomyces species encode about ten times as many secondary metabolites as predicted from known secondary metabolomes. This gave rise to a new discovery approach-microbial genome mining. As the cost of genome sequencing dropped, the numbers of sequenced bacteria, fungi and archaea expanded dramatically, and bioinformatic methods were developed to rapidly scan whole genomes for the numbers, types, and novelty of secondary metabolite biosynthetic gene clusters. This methodology enabled the identification of microbial taxa gifted for the biosynthesis of drug-like secondary metabolites. As genome sequencing technology progressed, the realities relevant to drug discovery have emerged, the conjectures and misconceptions have been clarified, and opportunities to reinvigorate microbial drug discovery have crystallized. This perspective addresses these critical issues for drug discovery.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.