fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Complete genome sequence of Streptomyces ambofaciens ATCC 23877, the spiramycin producer.

Streptomyces ambofaciens ATCC23877 is a soil bacterium industrially exploited for the production of the macrolide spiramycin which is used in human medicine as an antibacterial and anti-toxoplasmosis chemical. Its genome consists of a 8.3Mbp linear chromosome and a 89kb circular plasmid. The complete genome sequence reported here will enable us to investigate Streptomyces genome evolution and to discover new secondary metabolites with potential applications notably in human medicine. Copyright © 2015 Elsevier B.V. All rights reserved.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Arthrobacter sp. ERGS1:01, a putative novel bacterium with prospective cold active industrial enzymes, isolated from East Rathong glacier in India.

We report the complete genome sequence of Arthrobacter sp. ERGS1:01, a novel bacterium which produces industrial enzymes at low temperature. East Rathong glacier in Sikkim Himalayas is untouched and unexplored for microbial diversity though it has a rich source of glaciers, alpine and meadows. Genome sequence has provided the basis for understanding its adaptation under harsh condition of Himalayan glacier, its ability to produce cold active industrial enzymes and has unlocked opportunities for microbial bioprospection from East Rathong glacier. Copyright © 2015. Published by Elsevier B.V.

Read More »

Sunday, July 7, 2019

Complete genome sequence of the chromate-reducing bacterium Thermoanaerobacter thermohydrosulfuricus strain BSB-33.

Thermoanaerobacter thermohydrosulfuricus BSB-33 is a thermophilic gram positive obligate anaerobe isolated from a hot spring in West Bengal, India. Unlike other T. thermohydrosulfuricus strains, BSB-33 is able to anaerobically reduce Fe(III) and Cr(VI) optimally at 60 °C. BSB-33 is the first Cr(VI) reducing T. thermohydrosulfuricus genome sequenced and of particular interest for bioremediation of environmental chromium contaminations. Here we discuss features of T. thermohydrosulfuricus BSB-33 and the unique genetic elements that may account for the peculiar metal reducing properties of this organism. The T. thermohydrosulfuricus BSB-33 genome comprises 2597606 bp encoding 2581 protein genes, 12 rRNA, 193 pseudogenes and has a G?+?C…

Read More »

Sunday, July 7, 2019

Identification of the polyketide biosynthetic machinery for the indolizidine alkaloid cyclizidine.

The cyclizidine biosynthetic gene cluster was identified from Streptomyces NCIB 11649, which revealed the polyketide biosynthetic machinery for cyclizidine alkaloid biosynthesis. Both in vivo mutagenesis study and in vitro biochemical analysis provided insight into the timing and mechanism of the biosynthetic enzymes that produce cyclizidine-type indolizidine alkaloids.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Kibdelosporangium phytohabitans KLBMP 1111(T), a plant growth promoting endophytic actinomycete isolated from oil-seed plant Jatropha curcas L.

Kibdelosporangium phytohabitans KLBMP 1111(T) is a plant growth promoting endophytic actinomycete isolated from the oil-seed plant Jatropha curcas L. collected from dry-hot valley, in Sichuan, China. The complete genome sequence of this actinomycete consists of one chromosome (11,759,770bp) with no plasmid. From the genome, we identified gene clusters responsible for polyketide and nonribosomal peptide synthesis of natural products, and genes related to the plant growth promoting, such as zeatin, 1-aminocyclopropane-1-carboxylate deaminase (ACCD) and siderophore. The complete genome information may be useful to understand the beneficial interactions between K. phytohabitans KLBMP 1111(T) and host plants. Copyright © 2015. Published by Elsevier…

Read More »

Sunday, July 7, 2019

Complete genome sequence of Microbacterium sp. CGR1, bacterium tolerant to wide abiotic conditions isolated from the Atacama Desert.

Microbacterium sp. CGR1 (RGM2230) is an isolate from the Atacama Desert that displays a wide pH, salinity and temperature tolerance. This strain exhibits riboflavin overproducer features and traits for developing an environmental arsenic biosensor. Here, we report the complete genome sequence of this strain, which represents the first genome of the genus Microbacterium sequenced and assembled in a single contig. The genome contains 3,634,864bp, 3299 protein-coding genes, 45 tRNAs, six copies of 5S-16S-23S rRNA and a high genome average GC-content of 68.04%. Copyright © 2015 Elsevier B.V. All rights reserved.

Read More »

Sunday, July 7, 2019

A rebeccamycin analog provides plasmid-encoded niche defense.

Bacterial symbionts of fungus-growing ants occupy a highly specialized ecological niche and face the constant existential threat of displacement by another strain of ant-adapted bacteria. As part of a systematic study of the small molecules underlying this fraternal competition, we discovered an analog of the antitumor agent rebeccamycin, a member of the increasingly important indolocarbazole family. While several gene clusters consistent with this molecule’s newly reported modification had previously been identified in metagenomic studies, the metabolite itself has been cryptic. The biosynthetic gene cluster for 9-methoxyrebeccamycin is encoded on a plasmid in a manner reminiscent of plasmid-derived peptide antimicrobials that…

Read More »

Sunday, July 7, 2019

Comparative genomics and metabolic profiling of the genus Lysobacter.

Lysobacter species are Gram-negative bacteria widely distributed in soil, plant and freshwater habitats. Lysobacter owes its name to the lytic effects on other microorganisms. To better understand their ecology and interactions with other (micro)organisms, five Lysobacter strains representing the four species L. enzymogenes, L. capsici, L. gummosus and L. antibioticus were subjected to genomics and metabolomics analyses.Comparative genomics revealed a diverse genome content among the Lysobacter species with a core genome of 2,891 and a pangenome of 10,028 coding sequences. Genes encoding type I, II, III, IV, V secretion systems and type IV pili were highly conserved in all five…

Read More »

Sunday, July 7, 2019

Stenotrophomonas comparative genomics reveals genes and functions that differentiate beneficial and pathogenic bacteria.

In recent years, the number of human infections caused by opportunistic pathogens has increased dramatically. Plant rhizospheres are one of the most typical natural reservoirs for these pathogens but they also represent a great source for beneficial microbes with potential for biotechnological applications. However, understanding the natural variation and possible differences between pathogens and beneficials is the main challenge in furthering these possibilities. The genus Stenotrophomonas contains representatives found to be associated with human and plant host.We used comparative genomics as well as transcriptomic and physiological approaches to detect significant borders between the Stenotrophomonas strains: the multi-drug resistant pathogenic S.…

Read More »

Sunday, July 7, 2019

Draft genome sequence of marine actinomycete Streptomyces sp. strain NTK 937, producer of the benzoxazole antibiotic caboxamycin.

Streptomyces sp. strain NTK 937 is the producer of the benzoxazole antibiotic caboxamycin, which has been shown to exert inhibitory activity against Gram-positive bacteria, cytotoxic activity against several human tumor cell lines, and inhibition of the enzyme phosphodiesterase. In this genome announcement, we present a draft genome sequence of Streptomyces sp. NTK 937 in which we identified at least 35 putative secondary metabolite biosynthetic gene clusters. Copyright © 2014 Olano et al.

Read More »

Sunday, July 7, 2019

Draft genome sequence of Kitasatospora cheerisanensis KCTC 2395, which produces plecomacrolide against phytopathogenic fungi.

Kitasatospora cheerisanensis KCTC 2395, which produces antifungal metabolites with bafilomycin derivatives, including bafilomycin C1-amide, was isolated from a soil sample at Mt. Jiri, South Korea. Here, we report its draft genome sequence, which contains 8.04 Mb with 73.6% G+C content and 7,810 protein-coding genes. Copyright © 2014 Hwang et al.

Read More »

Sunday, July 7, 2019

Genome sequence of the e-poly-L-lysine-producing strain Streptomyces albulus NK660, isolated from soil in Gutian, Fujian Province, China.

We determined the complete genome sequence of a soil bacterium, Streptomyces albulus NK660. It can produce e-poly-l-lysine, which has antimicrobial activity against a spectrum of microorganisms. The genome of S. albulus NK660 contains a 9,360,281-bp linear chromosome and a 12,120-bp linear plasmid. Copyright © 2014 Gu et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Cellulophaga lytica HI1 using PacBio Single-Molecule Real-Time Sequencing.

We report here the complete genome sequence of Cellulophaga lytica HI1 isolated from a seawater table located at the Kewalo Marine Laboratory (Honolulu, HI). This is the first complete de novo genome assembly of C. lytica HI1 using PacBio single-molecule real-time (SMRT) sequencing, which resulted in a single scaffold of 3.8 Mb. Copyright © 2014 Asahina and Hadfield.

Read More »

Sunday, July 7, 2019

Complete genome sequence of the cyanide-degrading bacterium Pseudomonas pseudoalcaligenes CECT5344.

Pseudomonas pseudoalcaligenes CECT5344, a Gram-negative bacterium isolated from the Guadalquir River (Córdoba, Spain), is able to utilize different cyano-derivatives. Here, the complete genome sequence of P. pseudoalcaligenes CECT5344 harboring a 4,686,340bp circular chromosome encoding 4513 genes and featuring a GC-content of 62.34% is reported. Necessarily, remaining gaps in the genome had to be closed by assembly of few long reads obtained from PacBio single molecule real-time sequencing. Here, the first complete genome sequence for the species P. pseudoalcaligenes is presented. Copyright © 2014 Elsevier B.V. All rights reserved.

Read More »

1 2 3 4 5 6 8

Subscribe for blog updates:

Archives