fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae.

Antibiotic resistance is a major public health threat, further complicated by unexplained treatment failures caused by bacteria that appear antibiotic susceptible. We describe an Enterobacter cloacae isolate harbouring a minor subpopulation that is highly resistant to the last-line antibiotic colistin. This subpopulation was distinct from persisters, became predominant in colistin, returned to baseline after colistin removal and was dependent on the histidine kinase PhoQ. During murine infection, but in the absence of colistin, innate immune defences led to an increased frequency of the resistant subpopulation, leading to inefficacy of subsequent colistin therapy. An isolate with a lower-frequency colistin-resistant subpopulation similarly…

Read More »

Sunday, July 7, 2019

Genome sequence of the multiantibiotic-resistant Enterococcus faecium strain C68 and insights on the pLRM23 colonization plasmid.

Enterococcus faecium infections are a rising concern in hospital settings. Vancomycin-resistant enterococci colonize the gastrointestinal tract and replace nonresistant strains, complicating the treatment of debilitated patients. Here, we present a polished genome of the multiantibiotic-resistant strain C68, which was obtained as a clinical isolate and is a useful experimental strain. Copyright © 2016 García-Solache and Rice.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Enterococcus faecium ATCC 700221.

We report the complete genome sequence of a vancomycin-resistant isolate of Enterococcus faecium derived from human feces. The genome comprises one chromosome of 2.9 Mb and three plasmids. The strain harbors a plasmid-borne vanA-type vancomycin resistance locus and is a member of multilocus sequencing type (MLST) cluster ST-17. Copyright © 2016 McKenney et al.

Read More »

Sunday, July 7, 2019

Chromosome and plasmids of the tick-borne relapsing fever agent Borrelia hermsii.

The zoonotic pathogen Borrelia hermsii bears its multiple paralogous genes for variable antigens on several linear plasmids. Application of combined long-read and short-read next-generation sequencing provided complete sequences for antigen-encoding plasmids as well as other linear and circular plasmids and the linear chromosome of the genome. Copyright © 2016 Barbour.

Read More »

Sunday, July 7, 2019

High-quality genome assembly and annotation for Plasmodium coatneyi, generated using single-molecule real-time PacBio technology.

Plasmodium coatneyi is a protozoan parasite species that causes simian malaria and is an excellent model for studying disease caused by the human malaria parasite, P. falciparum Here we report the complete (nontelomeric) genome sequence of P. coatneyi Hackeri generated by the application of only Pacific Biosciences RS II (PacBio RS II) single-molecule real-time (SMRT) high-resolution sequence technology and assembly using the Hierarchical Genome Assembly Process (HGAP). This is the first Plasmodium genome sequence reported to use only PacBio technology. This approach has proven to be superior to short-read only approaches for this species. Copyright © 2016 Chien et al.

Read More »

Sunday, July 7, 2019

Lysosomal Cathepsin A plays a significant role in the processing of endogenous bioactive peptides.

Lysosomal serine carboxypeptidase Cathepsin A (CTSA) is a multifunctional enzyme with distinct protective and catalytic function. CTSA present in the lysosomal multienzyme complex to facilitate the correct lysosomal routing, stability and activation of with beta-galactosidase and alpha-neuraminidase. Beside CTSA has role in inactivation of bioactive peptides including bradykinin, substances P, oxytocin, angiotensin I and endothelin-I by cleavage of 1 or 2 amino acid(s) from C-terminal ends. In this study, we aimed to elucidate the regulatory role of CTSA on bioactive peptides in knock-in mice model of CTSA(S190A) . We investigated the level of bradykinin, substances P, oxytocin, angiotensin I and…

Read More »

Sunday, July 7, 2019

Genome sequences of Ralstonia insidiosa type strain ATCC 49129 and strain FC1138, a strong biofilm producer isolated from a fresh-cut produce-processing plant.

Ralstonia insidiosa is an opportunistic pathogen and a strong biofilm producer. Here, we present the complete genome sequences of R. insidiosa FC1138 and ATCC 49129. Both strains have two circular chromosomes of approximately 3.9 and 1.9 Mb and a 50-kb plasmid. ATCC 49129 also possesses a megaplasmid of approximately 318 kb. Copyright © 2016 Xu et al.

Read More »

Sunday, July 7, 2019

Neuraminidase A-exposed galactose promotes Streptococcus pneumoniae biofilm formation during colonization.

Streptococcus pneumoniae is an opportunistic pathogen that colonizes the nasopharynx. Herein we show that carbon availability is distinct between the nasopharynx and bloodstream of adult humans: glucose is absent from the nasopharynx, whereas galactose is abundant. We demonstrate that pneumococcal neuraminidase A (NanA), which cleaves terminal sialic acid residues from host glycoproteins, exposed galactose on the surface of septal epithelial cells, thereby increasing its availability during colonization. We observed that S. pneumoniae mutants deficient in NanA and ß-galactosidase A (BgaA) failed to form biofilms in vivo despite normal biofilm-forming abilities in vitro Subsequently, we observed that glucose, sucrose, and fructose…

Read More »

Sunday, July 7, 2019

Transfer of the methicillin resistance genomic island among staphylococci by conjugation.

Methicillin resistance creates a major obstacle for treatment of Staphylococcus aureus infections. The resistance gene, mecA, is carried on a large (20 kb to?>?60 kb) genomic island, staphylococcal cassette chromosome mec (SCCmec), that excises from and inserts site-specifically into the staphylococcal chromosome. However, although SCCmec has been designated a mobile genetic element, a mechanism for its transfer has not been defined. Here we demonstrate the capture and conjugative transfer of excised SCCmec. SCCmec was captured on pGO400, a mupirocin-resistant derivative of the pGO1/pSK41 staphylococcal conjugative plasmid lineage, and pGO400::SCCmec (pRM27) was transferred by filter-mating into both homologous and heterologous S.…

Read More »

Sunday, July 7, 2019

Highlights of the 11th International Bordetella Symposium: from basic biology to vaccine development.

Pertussis is a severe respiratory disease caused by infection with the bacterial pathogen Bordetella pertussis The disease affects individuals of all ages but is particularly severe and sometimes fatal in unvaccinated young infants. Other Bordetella species cause diseases in humans, animals, and birds. Scientific, clinical, public health, vaccine company, and regulatory agency experts on these pathogens and diseases gathered in Buenos Aires, Argentina from 5 to 8 April 2016 for the 11th International Bordetella Symposium to discuss recent advances in our understanding of the biology of these organisms, the diseases they cause, and the development of new vaccines and other…

Read More »

Sunday, July 7, 2019

Assembly, annotation, and comparative genomics in PATRIC, the All Bacterial Bioinformatics Resource Center.

In the “big data” era, research biologists are faced with analyzing new types that usually require some level of computational expertise. A number of programs and pipelines exist, but acquiring the expertise to run them, and then understanding the output can be a challenge.The Pathosystems Resource Integration Center (PATRIC, www.patricbrc.org ) has created an end-to-end analysis platform that allows researchers to take their raw reads, assemble a genome, annotate it, and then use a suite of user-friendly tools to compare it to any public data that is available in the repository. With close to 113,000 bacterial and more than 1000…

Read More »

Sunday, July 7, 2019

RIFRAF: a frame-resolving consensus algorithm.

Protein coding genes can be studied using long-read next generation sequencing. However, high rates of indel sequencing errors are problematic, corrupting the reading frame. Even the consensus of multiple independent sequence reads retains indel errors. To solve this problem, we introduce Reference-Informed Frame-Resolving multiple-Alignment Free template inference algorithm (RIFRAF), a sequence consensus algorithm that takes a set of error-prone reads and a reference sequence and infers an accurate in-frame consensus. RIFRAF uses a novel structure, analogous to a two-layer hidden Markov model: the consensus is optimized to maximize alignment scores with both the set of noisy reads and with a…

Read More »

Sunday, July 7, 2019

Moving forward: recent developments for the ferret biomedical research model.

Since the initial report in 1911, the domestic ferret has become an invaluable biomedical research model. While widely recognized for its utility in influenza virus research, ferrets are used for a variety of infectious and noninfectious disease models due to the anatomical, metabolic, and physiological features they share with humans and their susceptibility to many human pathogens. However, there are limitations to the model that must be overcome for maximal utility for the scientific community. Here, we describe important recent advances that will accelerate biomedical research with this animal model. Copyright © 2018 Albrecht et al.

Read More »

1 5 6 7

Subscribe for blog updates:

Archives