July 7, 2019  |  

MethSMRT: an integrative database for DNA N6-methyladenine and N4-methylcytosine generated by single-molecular real-time sequencing

DNA methylation is an important type of epigenetic modifications, where 5- methylcytosine (5mC), 6-methyadenine (6mA) and 4-methylcytosine (4mC) are the most common types. Previous efforts have been largely focused on 5mC, providing invaluable insights into epigenetic regulation through DNA methylation. Recently developed single-molecule real-time (SMRT) sequencing technology provides a unique opportunity to detect the less studied DNA 6mA and 4mC modifications at single-nucleotide resolution. With a rapidly increased amount of SMRT sequencing data generated, there is an emerging demand to systematically explore DNA 6mA and 4mC modifications from these data sets. MethSMRT is the first resource hosting DNA 6mA and 4mC methylomes. All the data sets were processed using the same analysis pipeline with the same quality control. The current version of the database provides a platform to store, browse, search and download epigenome-wide methylation profiles of 156 species, including seven eukaryotes such as Arabidopsis, C. elegans, Drosophila, mouse and yeast, as well as 149 prokaryotes. It also offers a genome browser to visualize the methylation sites and related information such as single nucleotide polymorphisms (SNP) and genomic annotation. Furthermore, the database provides a quick summary of statistics of methylome of 6mA and 4mC and predicted methylation motifs for each species. MethSMRT is publicly available at http://sysbio.sysu.edu.cn/methsmrt/ without use restriction.


July 7, 2019  |  

Novel methyltransferase recognition motif identified in Chania multitudinisentens RB-25(T) gen. nov., sp. nov.

DNA methylation, defined by the addition of a methyl group to adenine or cytosine bases in DNA catalyzed by DNA methyltransferases (MTases), is one of the most studied post-replicative DNA modification mechanism in bacteria (Roberts et al., 2003b). The three forms of nucleotide methylation identified to date are: N6-methyladenine(m6A), N4-methylcytosine (m4C), and 5-methylcytosine (m5C) (Gromova and Khoroshaev, 2003).


July 7, 2019  |  

Genomic insights into Campylobacter jejuni virulence and population genetics

Campylobacter jejuni has long been recognized as a main food-borne pathogen in many parts of the world. Natural reservoirs include a wide variety of domestic and wild birds and mammals, whose intestines offer a suitable biological niche for the survival and dissemination of the organism. Understanding the genetic basis of the biology and pathogenicity of C. jejuni is vital to prevent and control Campylobacter-associated infections. The recent progress in sequencing techniques has allowed for a rapid increase in our knowledge of the molecular biology and the genetic structures of Campylobacter. Single-molecule realtime (SMRT) sequencing, which goes beyond four-base sequencing, revealed the role of DNA methylation in modulating the biology and virulence of C. jejuni at the level of epigenetics. In this review, we will provide an up-to-date review on recent advances in understanding C. jejuni genomics, including structural features of genomes, genetic traits of virulence, population genetics, and epigenetics.


July 7, 2019  |  

Listeria monocytogenes in stone fruits linked to a multistate outbreak: enumeration of cells and whole-genome sequencing.

In 2014, the identification of stone fruits contaminated with Listeria monocytogenes led to the subsequent identification of a multistate outbreak. Simultaneous detection and enumeration of L. monocytogenes were performed on 105 fruits, each weighing 127 to 145 g, collected from 7 contaminated lots. The results showed that 53.3% of the fruits yielded L. monocytogenes (lower limit of detection, 5 CFU/fruit), and the levels ranged from 5 to 2,850 CFU/fruit, with a geometric mean of 11.3 CFU/fruit (0.1 CFU/g of fruit). Two serotypes, IVb-v1 and 1/2b, were identified by a combination of PCR- and antiserum-based serotyping among isolates from fruits and their packing environment; certain fruits contained a mixture of both serotypes. Single nucleotide polymorphism (SNP)-based whole-genome sequencing (WGS) analysis clustered isolates from two case-patients with the serotype IVb-v1 isolates and distinguished outbreak-associated isolates from pulsed-field gel electrophoresis (PFGE)-matched, but epidemiologically unrelated, clinical isolates. The outbreak-associated isolates differed by up to 42 SNPs. All but one serotype 1/2b isolate formed another WGS cluster and differed by up to 17 SNPs. Fully closed genomes of isolates from the stone fruits were used as references to maximize the resolution and to increase our confidence in prophage analysis. Putative prophages were conserved among isolates of each WGS cluster. All serotype IVb-v1 isolates belonged to singleton sequence type 382 (ST382); all but one serotype 1/2b isolate belonged to clonal complex 5.WGS proved to be an excellent tool to assist in the epidemiologic investigation of listeriosis outbreaks. The comparison at the genome level contributed to our understanding of the genetic diversity and variations among isolates involved in an outbreak or isolates associated with food and environmental samples from one facility. Fully closed genomes increased our confidence in the identification and comparison of accessory genomes. The diversity among the outbreak-associated isolates and the inclusion of PFGE-matched, but epidemiologically unrelated, isolates demonstrate the high resolution of WGS. The prevalence and enumeration data could contribute to our further understanding of the risk associated with Listeria monocytogenes contamination, especially among high-risk populations. Copyright © 2016 Chen et al.


July 7, 2019  |  

Cell cycle constraints and environmental control of local DNA hypomethylation in a-proteobacteria.

Heritable DNA methylation imprints are ubiquitous and underlie genetic variability from bacteria to humans. In microbial genomes, DNA methylation has been implicated in gene transcription, DNA replication and repair, nucleoid segregation, transposition and virulence of pathogenic strains. Despite the importance of local (hypo)methylation at specific loci, how and when these patterns are established during the cell cycle remains poorly characterized. Taking advantage of the small genomes and the synchronizability of a-proteobacteria, we discovered that conserved determinants of the cell cycle transcriptional circuitry establish specific hypomethylation patterns in the cell cycle model system Caulobacter crescentus. We used genome-wide methyl-N6-adenine (m6A-) analyses by restriction-enzyme-cleavage sequencing (REC-Seq) and single-molecule real-time (SMRT) sequencing to show that MucR, a transcriptional regulator that represses virulence and cell cycle genes in S-phase but no longer in G1-phase, occludes 5′-GANTC-3′ sequence motifs that are methylated by the DNA adenine methyltransferase CcrM. Constitutive expression of CcrM or heterologous methylases in at least two different a-proteobacteria homogenizes m6A patterns even when MucR is present and affects promoter activity. Environmental stress (phosphate limitation) can override and reconfigure local hypomethylation patterns imposed by the cell cycle circuitry that dictate when and where local hypomethylation is instated.


July 7, 2019  |  

Genome sequence of a commensal bacterium, Enterococcus faecalis CBA7120, isolated from a Korean fecal sample.

Enterococcus faecalis, the type strain of the genus Enterococcus, is not only a commensal bacterium in the gastrointestinal tract in vertebrates and invertebrates, but also causes serious disease as an opportunistic pathogen. To date, genome sequences have been published for over four hundred E. faecalis strains; however, pathogenicity of these microbes remains complicated. To increase our knowledge of E. faecalis virulence factors, we isolated strain CBA7120 from the feces of an 81-year-old female from the Republic of Korea and performed a comparative genomic analysis.The genome sequence of E. faecalis CBA7120 is 3,134,087 bp in length, with a G + C content of 37.35 mol%, and is comprised of four contigs with an N50 value of 2,922,046 bp. The genome showed high similarity with other strains of E. faecalis, including OG1RF, T13, 12107 and T20, based on OrthoANI values. Strain CBA7120 contains 374 pan-genome orthologous groups (POGs) as singletons, including “Phages, Prophages, Transposable elements, Plasmids,” “Carbohydrates,” “DNA metabolism,” and “Virulence, Disease and Defense” subsystems. Genes related to multidrug resistance efflux pumps were annotated in the genome.The comparative genomic analysis of E. faecalis strains presented in this study was performed using a variety of analysis methods and will facilitate future identification of hypothetical proteins.


July 7, 2019  |  

Use of single molecule sequencing for comparative genomics of an environmental and a clinical isolate of Clostridium difficile ribotype 078.

How the pathogen Clostridium difficile might survive, evolve and be transferred between reservoirs within the natural environment is poorly understood. Some ribotypes are found both in clinical and environmental settings. Whether these strains are distinct from each another and evolve in the specific environments is not established. The possession of a highly mobile genome has contributed to the genetic diversity and ongoing evolution of C. difficile. Interpretations of genetic diversity have been limited by fragmented assemblies resulting from short-read length sequencing approaches and by a limited understanding of epigenetic regulation of diversity. To address this, single molecule real time (SMRT) sequencing was used in this study as it produces high quality genome sequences, with resolution of repeat regions (including those found in mobile elements) and can generate data to determine methylation modifications across the sequence (the methylome).Chromosomal rearrangements and ribosomal operon duplications were observed in both genomes. The rearrangements occurred at insertion sites within two mobile genetic elements (MGEs), Tn6164 and Tn6293, present only in the M120 and CD105HS27 genomes, respectively. The gene content of these two transposons differ considerably which could impact upon horizontal gene transfer; differences include CDSs encoding methylases and a conjugative prophage only in Tn6164. To investigate mechanisms which could affect MGE transfer, the methylome, restriction modification (RM)  and the CRISPR/Cas systems were characterised for each strain. Notably, the environmental isolate, CD105HS27, does not share a consensus motif for (m4)C methylation, but has one additional spacer  when compared to the clinical isolate M120.These findings show key differences between the two strains in terms of their genetic capacity for MGE transfer. The carriage of horizontally transferred genes appear to have genome wide effects based on two different methylation patterns. The CRISPR/Cas system appears active although perhaps slow to evolve. Data suggests that both mechanisms are functional and impact upon horizontal gene transfer and genome evolution within C. difficile.


July 7, 2019  |  

Meeting report: mobile genetic elements and genome plasticity 2018

The Mobile Genetic Elements and Genome Plasticity conference was hosted by Keystone Symposia in Santa Fe, NM USA, February 11–15, 2018. The organizers were Marlene Belfort, Evan Eichler, Henry Levin and Lynn Maquat. The goal of this conference was to bring together scientists from around the world to discuss the function of transposable elements and their impact on host species. Central themes of the meeting included recent innovations in genome analysis and the role of mobile DNA in disease and evolution. The conference included 200 scientists who participated in poster presentations, short talks selected from abstracts, and invited talks. A total of 58 talks were organized into eight sessions and two workshops. The topics varied from mechanisms of mobilization, to the structure of genomes and their defense strategies to protect against transposable elements.


July 7, 2019  |  

Complete genome sequence of Lactococcus lactis subsp. lactis SLPE1-3, a novel lactic acid bacterium causing postharvest decay of the mushroom Pleurotus eryngii

Lactococcus lactis subsp. lactis is a pathogenic bacterium causing postharvest decay of the cultivated mushroom Pleurotus eryngii, whose pathogenic mechanism is little known. Sequencing of its complete genome is a prerequisite for revealing the molecular mechanism of infection. In this research, the complete genome of SLPE1-3 was obtained using the Single Molecular Real Time (SMRT) sequencing strategy. The genome was analyzed both structurally and functionally. The complete genome of SLPE1-3 consists of a single, circular chromosome (2,522,493 bp; 34.91% GC content) without any plasmid. The results showed the feasibility and superiority of SMRT in bacterial complete-genome research. The genome of SLPE1-3 has the specific features of L. lactis subsp. lactis not just in the phylogenesis and genome structure, but also in functional classification. Compared with L. lactis subsp. lactis IL1403, L. lactis subsp. cremoris MG1363 and L. lactis subsp. lactis KF147, 23 peculiar genes were identified in SLPE1-3 which were involved in lipid metabolism, cell wall biogenesis and some functional enzymes. In addition, 37 potential genes relating to antifungal function were filtered for further mechanism research.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.