Menu
September 22, 2019  |  

The dynamic landscape of fission yeast meiosis alternative-splice isoforms.

Alternative splicing increases the diversity of transcriptomes and proteomes in metazoans. The extent to which alternative splicing is active and functional in unicellular organisms is less understood. Here, we exploit a single-molecule long-read sequencing technique and develop an open-source software program called SpliceHunter to characterize the transcriptome in the meiosis of fission yeast. We reveal 14,353 alternative splicing events in 17,669 novel isoforms at different stages of meiosis, including antisense and read-through transcripts. Intron retention is the major type of alternative splicing, followed by alternate “intron in exon.” Seven hundred seventy novel transcription units are detected; 53 of the predicted proteins show homology in other species and form theoretical stable structures. We report the complexity of alternative splicing along isoforms, including 683 intra-molecularly co-associated intron pairs. We compare the dynamics of novel isoforms based on the number of supporting full-length reads with those of annotated isoforms and explore the translational capacity and quality of novel isoforms. The evaluation of these factors indicates that the majority of novel isoforms are unlikely to be both condition-specific and translatable but consistent with the possibility of biologically functional novel isoforms. Moreover, the co-option of these unusual transcripts into newly born genes seems likely. Together, the results of this study highlight the diversity and dynamics at the isoform level in the sexual development of fission yeast. © 2017 Kuang et al.; Published by Cold Spring Harbor Laboratory Press.


September 22, 2019  |  

A high-resolution genetic map of the cereal crown rot pathogen Fusarium pseudograminearum provides a near-complete genome assembly.

Fusarium pseudograminearum is an important pathogen of wheat and barley, particularly in semi-arid environments. Previous genome assemblies for this organism were based entirely on short read data and are highly fragmented. In this work, a genetic map of F. pseudograminearum has been constructed for the first time based on a mapping population of 178 individuals. The genetic map, together with long read scaffolding of a short read-based genome assembly, was used to give a near-complete assembly of the four F. pseudograminearum chromosomes. Large regions of synteny between F. pseudograminearum and F. graminearum, the related pathogen that is the primary causal agent of cereal head blight disease, were previously proposed in the core conserved genome, but the construction of a genetic map to order and orient contigs is critical to the validation of synteny and the placing of species-specific regions. Indeed, our comparative analyses of the genomes of these two related pathogens suggest that rearrangements in the F. pseudograminearum genome have occurred in the chromosome ends. One of these rearrangements includes the transposition of an entire gene cluster involved in the detoxification of the benzoxazolinone (BOA) class of plant phytoalexins. This work provides an important genomic and genetic resource for F. pseudograminearum, which is less well characterized than F. graminearum. In addition, this study provides new insights into a better understanding of the sexual reproduction process in F. pseudograminearum, which informs us of the potential of this pathogen to evolve.© 2016 BSPP AND JOHN WILEY & SONS LTD.


September 22, 2019  |  

Evidence of non-tandemly repeated rDNAs and their intragenomic heterogeneity in Rhizophagus irregularis

Arbuscular mycorrhizal fungus (AMF) species are some of the most widespread symbionts of land plants. Our much improved reference genome assembly of a model AMF, Rhizophagus irregularis DAOM-181602 (total contigs?=?210), facilitated a discovery of repetitive elements with unusual characteristics. R. irregularis has only ten or 11 copies of complete 45S rDNAs, whereas the general eukaryotic genome has tens to thousands of rDNA copies. R. irregularis rDNAs are highly heterogeneous and lack a tandem repeat structure. These findings provide evidence for the hypothesis that rDNA heterogeneity depends on the lack of tandem repeat structures. RNA-Seq analysis confirmed that all rDNA variants are actively transcribed. Observed rDNA/rRNA polymorphisms may modulate translation by using different ribosomes depending on biotic and abiotic interactions. The non-tandem repeat structure and intragenomic heterogeneity of AMF rDNA/rRNA may facilitate successful adaptation to various environmental conditions, increasing host compatibility of these symbiotic fungi.


September 22, 2019  |  

Genome sequence of the cauliflower mushroom Sparassis crispa (Hanabiratake) and its association with beneficial usage.

Sparassis crispa (Hanabiratake) is a widely used medicinal mushroom in traditional Chinese medicine because it contains materials with pharmacological activity. Here, we report its 39.0-Mb genome, encoding 13,157 predicted genes, obtained using next-generation sequencing along with RNA-seq mapping data. A phylogenetic analysis by comparison with 25 other fungal genomes revealed that S. crispa diverged from Postia placenta, a brown-rot fungus, 94 million years ago. Several features specific to the genome were found, including the A-mating type locus with the predicted genes for HD1 and HD2 heterodomain transcription factors, the mitochondrial intermediate peptidase (MIP), and the B-mating type locus with seven potential pheromone receptor genes and three potential pheromone precursor genes. To evaluate the benefits of the extract and chemicals from S. crispa, we adopted two approaches: (1) characterization of carbohydrate-active enzyme (CAZyme) genes and ß-glucan synthase genes and the clusters of genes for the synthesis of second metabolites, such as terpenes, indoles and polyketides, and (2) identification of estrogenic activity in its mycelial extract. Two potential ß-glucan synthase genes, ScrFKS1 and ScrFKS2, corresponding to types I and II, respectively, characteristic of Agaricomycetes mushrooms, were newly identified by the search for regions homologous to the reported features of ß-glucan synthase genes; both contained the characteristic transmembrane regions and the regions homologous to the catalytic domain of the yeast ß-glucan synthase gene FKS1. Rapid estrogenic cell-signaling and DNA microarray-based transcriptome analyses revealed the presence of a new category of chemicals with estrogenic activity, silent estrogens, in the extract. The elucidation of the S. crispa genome and its genes will expand the potential of this organism for medicinal and pharmacological purposes.


September 21, 2019  |  

Phased diploid genome assembly with single-molecule real-time sequencing.

While genome assembly projects have been successful in many haploid and inbred species, the assembly of noninbred or rearranged heterozygous genomes remains a major challenge. To address this challenge, we introduce the open-source FALCON and FALCON-Unzip algorithms (https://github.com/PacificBiosciences/FALCON/) to assemble long-read sequencing data into highly accurate, contiguous, and correctly phased diploid genomes. We generate new reference sequences for heterozygous samples including an F1 hybrid of Arabidopsis thaliana, the widely cultivated Vitis vinifera cv. Cabernet Sauvignon, and the coral fungus Clavicorona pyxidata, samples that have challenged short-read assembly approaches. The FALCON-based assemblies are substantially more contiguous and complete than alternate short- or long-read approaches. The phased diploid assembly enabled the study of haplotype structure and heterozygosities between homologous chromosomes, including the identification of widespread heterozygous structural variation within coding sequences.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.