Menu
September 22, 2019  |  

Global transcript structure resolution of high gene density genomes through multi-platform data integration.

Annotation of herpesvirus genomes has traditionally been undertaken through the detection of open reading frames and other genomic motifs, supplemented with sequencing of individual cDNAs. Second generation sequencing and high-density microarray studies have revealed vastly greater herpesvirus transcriptome complexity than is captured by existing annotation. The pervasive nature of overlapping transcription throughout herpesvirus genomes, however, poses substantial problems in resolving transcript structures using these methods alone. We present an approach that combines the unique attributes of Pacific Biosciences Iso-Seq long-read, Illumina short-read and deepCAGE (Cap Analysis of Gene Expression) sequencing to globally resolve polyadenylated isoform structures in replicating Epstein-Barr virus (EBV). Our method, Transcriptome Resolution through Integration of Multi-platform Data (TRIMD), identifies nearly 300 novel EBV transcripts, quadrupling the size of the annotated viral transcriptome. These findings illustrate an array of mechanisms through which EBV achieves functional diversity in its relatively small, compact genome including programmed alternative splicing (e.g. across the IR1 repeats), alternative promoter usage by LMP2 and other latency-associated transcripts, intergenic splicing at the BZLF2 locus, and antisense transcription and pervasive readthrough transcription throughout the genome.© The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.


September 22, 2019  |  

Carbohydrate staple food modulates gut microbiota of Mongolians in China.

Gut microbiota is a determining factor in human physiological functions and health. It is commonly accepted that diet has a major influence on the gut microbial community, however, the effects of diet is not fully understood. The typical Mongolian diet is characterized by high and frequent consumption of fermented dairy products and red meat, and low level of carbohydrates. In this study, the gut microbiota profile of 26 Mongolians whom consumed wheat, rice and oat as the sole carbohydrate staple food for a week each consecutively was determined. It was observed that changes in staple carbohydrate rapidly (within a week) altered gut microbial community structure and metabolic pathway of the subjects. Wheat and oat favored bifidobacteria (Bifidobacterium catenulatum, Bifodobacteriumbifidum, Bifidobacterium adolescentis); whereas rice suppressed bifidobacteria (Bifidobacterium longum, Bifidobacterium adolescentis) and wheat suppresses Lactobaciilus, Ruminococcus and Bacteroides. The study exhibited two gut microbial clustering patterns with the preference of fucosyllactose utilization linking to fucosidase genes (glycoside hydrolase family classifications: GH95 and GH29) encoded by Bifidobacterium, and xylan and arabinoxylan utilization linking to xylanase and arabinoxylanase genes encoded by Bacteroides. There was also a correlation between Lactobacillus ruminis and sialidase, as well as Butyrivibrio crossotus and xylanase/xylosidase. Meanwhile, a strong concordance was found between the gastrointestinal bacterial microbiome and the intestinal virome. Present research will contribute to understanding the impacts of the dietary carbohydrate on human gut microbiome, which will ultimately help understand relationships between dietary factor, microbial populations, and the health of global humans.


September 22, 2019  |  

Dynamic regulation of HIV-1 mRNA populations analyzed by single-molecule enrichment and long-read sequencing.

Alternative RNA splicing greatly expands the repertoire of proteins encoded by genomes. Next-generation sequencing (NGS) is attractive for studying alternative splicing because of the efficiency and low cost per base, but short reads typical of NGS only report mRNA fragments containing one or few splice junctions. Here, we used single-molecule amplification and long-read sequencing to study the HIV-1 provirus, which is only 9700 bp in length, but encodes nine major proteins via alternative splicing. Our data showed that the clinical isolate HIV-1(89.6) produces at least 109 different spliced RNAs, including a previously unappreciated ~1 kb class of messages, two of which encode new proteins. HIV-1 message populations differed between cell types, longitudinally during infection, and among T cells from different human donors. These findings open a new window on a little studied aspect of HIV-1 replication, suggest therapeutic opportunities and provide advanced tools for the study of alternative splicing.


September 22, 2019  |  

Metagenomic binning and association of plasmids with bacterial host genomes using DNA methylation.

Shotgun metagenomics methods enable characterization of microbial communities in human microbiome and environmental samples. Assembly of metagenome sequences does not output whole genomes, so computational binning methods have been developed to cluster sequences into genome ‘bins’. These methods exploit sequence composition, species abundance, or chromosome organization but cannot fully distinguish closely related species and strains. We present a binning method that incorporates bacterial DNA methylation signatures, which are detected using single-molecule real-time sequencing. Our method takes advantage of these endogenous epigenetic barcodes to resolve individual reads and assembled contigs into species- and strain-level bins. We validate our method using synthetic and real microbiome sequences. In addition to genome binning, we show that our method links plasmids and other mobile genetic elements to their host species in a real microbiome sample. Incorporation of DNA methylation information into shotgun metagenomics analyses will complement existing methods to enable more accurate sequence binning.


September 22, 2019  |  

Clinical PathoScope: rapid alignment and filtration for accurate pathogen identification in clinical samples using unassembled sequencing data.

The use of sequencing technologies to investigate the microbiome of a sample can positively impact patient healthcare by providing therapeutic targets for personalized disease treatment. However, these samples contain genomic sequences from various sources that complicate the identification of pathogens.Here we present Clinical PathoScope, a pipeline to rapidly and accurately remove host contamination, isolate microbial reads, and identify potential disease-causing pathogens. We have accomplished three essential tasks in the development of Clinical PathoScope. First, we developed an optimized framework for pathogen identification using a computational subtraction methodology in concordance with read trimming and ambiguous read reassignment. Second, we have demonstrated the ability of our approach to identify multiple pathogens in a single clinical sample, accurately identify pathogens at the subspecies level, and determine the nearest phylogenetic neighbor of novel or highly mutated pathogens using real clinical sequencing data. Finally, we have shown that Clinical PathoScope outperforms previously published pathogen identification methods with regard to computational speed, sensitivity, and specificity.Clinical PathoScope is the only pathogen identification method currently available that can identify multiple pathogens from mixed samples and distinguish between very closely related species and strains in samples with very few reads per pathogen. Furthermore, Clinical PathoScope does not rely on genome assembly and thus can more rapidly complete the analysis of a clinical sample when compared with current assembly-based methods. Clinical PathoScope is freely available at: http://sourceforge.net/projects/pathoscope/.


September 22, 2019  |  

Evolution of selective-sequencing approaches for virus discovery and virome analysis.

Recent advances in sequencing technologies have transformed the field of virus discovery and virome analysis. Once mostly confined to the traditional Sanger sequencing based individual virus discovery, is now entirely replaced by high throughput sequencing (HTS) based virus metagenomics that can be used to characterize the nature and composition of entire viromes. To better harness the potential of HTS for the study of viromes, sample preparation methodologies use different approaches to exclude amplification of non-viral components that can overshadow low-titer viruses. These virus-sequence enrichment approaches mostly focus on the sample preparation methods, like enzymatic digestion of non-viral nucleic acids and size exclusion of non-viral constituents by column filtration, ultrafiltration or density gradient centrifugation. However, recently a new approach of virus-sequence enrichment called virome-capture sequencing, focused on the amplification or HTS library preparation stage, was developed to increase the ability of virome characterization. This new approach has the potential to further transform the field of virus discovery and virome analysis, but its technical complexity and sequence-dependence warrants further improvements. In this review we discuss the different methods, their applications and evolution, for selective sequencing based virome analysis and also propose refinements needed to harness the full potential of HTS for virome analysis. Copyright © 2017 Elsevier B.V. All rights reserved.


September 22, 2019  |  

Differential increases of specific FMR1 mRNA isoforms in premutation carriers.

Over 40% of male and ~16% of female carriers of a premutation FMR1 allele (55-200 CGG repeats) will develop fragile X-associated tremor/ataxia syndrome, an adult onset neurodegenerative disorder, while about 20% of female carriers will develop fragile X-associated primary ovarian insufficiency. Marked elevation in FMR1 mRNA transcript levels has been observed with premutation alleles, and RNA toxicity due to increased mRNA levels is the leading molecular mechanism proposed for these disorders. However, although the FMR1 gene undergoes alternative splicing, it is unknown whether all or only some of the isoforms are overexpressed in premutation carriers and which isoforms may contribute to the premutation pathology.To address this question, we have applied a long-read sequencing approach using single-molecule real-time (SMRT) sequencing and qRT-PCR. Our SMRT sequencing analysis performed on peripheral blood mononuclear cells, fibroblasts and brain tissue samples derived from premutation carriers and controls revealed the existence of 16 isoforms of 24 predicted variants. Although the relative abundance of all mRNA isoforms was significantly increased in the premutation group, as expected based on the bulk increase in mRNA levels, there was a disproportionate (fourfold to sixfold) increase, relative to the overall increase in mRNA, in the abundance of isoforms spliced at both exons 12 and 14, specifically Iso10 and Iso10b, containing the complete exon 15 and differing only in splicing in exon 17.These findings suggest that RNA toxicity may arise from a relative increase of all FMR1 mRNA isoforms. Interestingly, the Iso10 and Iso10b mRNA isoforms, lacking the C-terminal functional sites for fragile X mental retardation protein function, are the most increased in premutation carriers relative to normal, suggesting a functional relevance in the pathology of FMR1-associated disorders. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.


September 22, 2019  |  

Differential TGFß pathway targeting by miR-122 in humans and mice affects liver cancer metastasis.

Downregulation of a predominantly hepatocyte-specific miR-122 is associated with human liver cancer metastasis, whereas miR-122-deficient mice display normal liver function. Here we show a functional conservation of miR-122 in the TGFß pathway: miR-122 target site is present in the mouse but not human TGFßR1, whereas a noncanonical target site is present in the TGFß1 5’UTR in humans and other primates. Experimental switch of the miR-122 target between the receptor TGFßR1 and the ligand TGFß1 changes the metastatic properties of mouse and human liver cancer cells. High expression of TGFß1 in human primary liver tumours is associated with poor survival. We identify over 50 other miRNAs orthogonally targeting ligand/receptor pairs in humans and mice, suggesting that these are evolutionarily common events. These results reveal an evolutionary mechanism for miRNA-mediated gene regulation underlying species-specific physiological or pathological phenotype and provide a potentially valuable strategy for treating liver-associated diseases.


September 22, 2019  |  

Identification and characterization of a carboxypeptidase N1 from red lip mullet (Liza haematocheila); revealing its immune relevance.

Complement system orchestrates the innate and adaptive immunity via the activation, recruitment, and regulation of immune molecules to destroy pathogens. However, regulation of the complement is essential to avoid injuries to the autologous tissues. The present study unveils the characteristic features of an important complement component, anaphylatoxin inactivator from red lip mullet at its molecular and functional level. Mullet carboxypeptidase N1 (MuCPN1) cDNA sequence possessed an open reading frame of 1347 bp, which encoded a protein of 449 amino acids with a predicted molecular weight of 51?kDa. In silico analysis discovered two domains of PM14-Zn carboxypeptidase and a C-terminal domain of M14 N/E carboxypeptidase, two zinc-binding signature motifs, and an N-glycosylation site in the MuCPN1 sequence. Homology analysis revealed that most of the residues in the sequence are conserved among the other selected homologs. Phylogeny analysis showed that MuCPN1 closely cladded with the Maylandia zebra CPN1 and clustered together with the teleostean counterparts. A challenge experiment showed modulated expression of MuCPN1 upon polyinosinic:polycytidylic acid and Lactococcus garviae in head kidney, spleen, gill, and liver tissues. The highest upregulation of MuCPN1 was observed 24?h post infection against poly I:C in each tissue. Moreover, the highest relative expressions upon L. garviae challenge were observed at 24?h post infection in head kidney tissue and 48?h post infection in spleen, gill, and liver tissues. MuCPN1 transfected cells triggered a 2.2-fold increase of nitric oxide (NO) production upon LPS stimulation compared to the un-transfected controls suggesting that MuCPN1 is an active protease which releases arginine from complement C3a, C4a, and C5a. These results have driven certain way towards enhancing the understanding of immune role of MuCPN1 in the complement defense mechanism of red lip mullet. Copyright © 2018 Elsevier Ltd. All rights reserved.


September 22, 2019  |  

The role of MHC-E in T cell immunity is conserved among humans, rhesus macaques, and cynomolgus macaques.

MHC-E is a highly conserved nonclassical MHC class Ib molecule that predominantly binds and presents MHC class Ia leader sequence-derived peptides for NK cell regulation. However, MHC-E also binds pathogen-derived peptide Ags for presentation to CD8+ T cells. Given this role in adaptive immunity and its highly monomorphic nature in the human population, HLA-E is an attractive target for novel vaccine and immunotherapeutic modalities. Development of HLA-E-targeted therapies will require a physiologically relevant animal model that recapitulates HLA-E-restricted T cell biology. In this study, we investigated MHC-E immunobiology in two common nonhuman primate species, Indian-origin rhesus macaques (RM) and Mauritian-origin cynomolgus macaques (MCM). Compared to humans and MCM, RM expressed a greater number of MHC-E alleles at both the population and individual level. Despite this difference, human, RM, and MCM MHC-E molecules were expressed at similar levels across immune cell subsets, equivalently upregulated by viral pathogens, and bound and presented identical peptides to CD8+ T cells. Indeed, SIV-specific, Mamu-E-restricted CD8+ T cells from RM recognized antigenic peptides presented by all MHC-E molecules tested, including cross-species recognition of human and MCM SIV-infected CD4+ T cells. Thus, MHC-E is functionally conserved among humans, RM, and MCM, and both RM and MCM represent physiologically relevant animal models of HLA-E-restricted T cell immunobiology. Copyright © 2017 by The American Association of Immunologists, Inc.


September 22, 2019  |  

Rodent papillomaviruses.

Preclinical infection model systems are extremely valuable tools to aid in our understanding of Human Papillomavirus (HPV) biology, disease progression, prevention, and treatments. In this context, rodent papillomaviruses and their respective infection models are useful tools but remain underutilized resources in the field of papillomavirus biology. Two rodent papillomaviruses, MnPV1, which infects the Mastomys species of multimammate rats, and MmuPV1, which infects laboratory mice, are currently the most studied rodent PVs. Both of these viruses cause malignancy in the skin and can provide attractive infection models to study the lesser understood cutaneous papillomaviruses that have been frequently associated with HPV-related skin cancers. Of these, MmuPV1 is the first reported rodent papillomavirus that can naturally infect the laboratory strain of mice. MmuPV1 is an attractive model virus to study papillomavirus pathogenesis because of the ubiquitous availability of lab mice and the fact that this mouse species is genetically modifiable. In this review, we have summarized the knowledge we have gained about PV biology from the study of rodent papillomaviruses and point out the remaining gaps that can provide new research opportunities.


September 22, 2019  |  

Analysis of RNA base modification and structural rearrangement by single-molecule real-time detection of reverse transcription.

Zero-mode waveguides (ZMWs) are photonic nanostructures that create highly confined optical observation volumes, thereby allowing single-molecule-resolved biophysical studies at relatively high concentrations of fluorescent molecules. This principle has been successfully applied in single-molecule, real-time (SMRT®) DNA sequencing for the detection of DNA sequences and DNA base modifications. In contrast, RNA sequencing methods cannot provide sequence and RNA base modifications concurrently as they rely on complementary DNA (cDNA) synthesis by reverse transcription followed by sequencing of cDNA. Thus, information on RNA modifications is lost during the process of cDNA synthesis.Here we describe an application of SMRT technology to follow the activity of reverse transcriptase enzymes synthesizing cDNA on thousands of single RNA templates simultaneously in real time with single nucleotide turnover resolution using arrays of ZMWs. This method thereby obtains information from the RNA template directly. The analysis of the kinetics of the reverse transcriptase can be used to identify RNA base modifications, shown by example for N6-methyladenine (m6A) in oligonucleotides and in a specific mRNA extracted from total cellular mRNA. Furthermore, the real-time reverse transcriptase dynamics informs about RNA secondary structure and its rearrangements, as demonstrated on a ribosomal RNA and an mRNA template.Our results highlight the feasibility of studying RNA modifications and RNA structural rearrangements in ZMWs in real time. In addition, they suggest that technology can be developed for direct RNA sequencing provided that the reverse transcriptase is optimized to resolve homonucleotide stretches in RNA.


September 22, 2019  |  

Gut microbiota, nitric oxide, and microglia as prerequisites for neurodegenerative disorders.

Regulating fluctuating endogenous nitric oxide (NO) levels is necessary for proper physiological functions. Aberrant NO pathways are implicated in a number of neurological disorders, including Alzheimer’s disease (AD) and Parkinson’s disease. The mechanism of NO in oxidative and nitrosative stress with pathological consequences involves reactions with reactive oxygen species (e.g., superoxide) to form the highly reactive peroxynitrite, hydrogen peroxide, hypochloride ions and hydroxyl radical. NO levels are typically regulated by endogenous nitric oxide synthases (NOS), and inflammatory iNOS is implicated in the pathogenesis of neurodegenerative diseases, in which elevated NO mediates axonal degeneration and activates cyclooxygenases to provoke neuroinflammation. NO also instigates a down-regulated secretion of brain-derived neurotrophic factor, which is essential for neuronal survival, development and differentiation, synaptogenesis, and learning and memory. The gut-brain axis denotes communication between the enteric nervous system (ENS) of the GI tract and the central nervous system (CNS) of the brain, and the modes of communication include the vagus nerve, passive diffusion and carrier by oxyhemoglobin. Amyloid precursor protein that forms amyloid beta plaques in AD is normally expressed in the ENS by gut bacteria, but when amyloid beta accumulates, it compromises CNS functions. Escherichia coli and Salmonella enterica are among the many bacterial strains that express and secrete amyloid proteins and contribute to AD pathogenesis. Gut microbiota is essential for regulating microglia maturation and activation, and activated microglia secrete significant amounts of iNOS. Pharmacological interventions and lifestyle modifications to rectify aberrant NO signaling in AD include NOS inhibitors, NMDA receptor antagonists, potassium channel modulators, probiotics, diet, and exercise.


September 22, 2019  |  

Composition and pathogenic potential of a microbial bioremediation product used for crude oil degradation.

A microbial bioremediation product (MBP) used for large-scale oil degradation was investigated for microbial constituents and possible pathogenicity. Aerobic growth on various media yielded >108 colonies mL-1. Full-length 16S rDNA sequencing and fatty acid profiling from morphologically distinct colonies revealed =13 distinct genera. Full-length 16S rDNA library sequencing, by either Sanger or long-read PacBio technology, suggested that up to 21% of the MBP was composed of Arcobacter. Other high abundance microbial constituents (>6%) included the genera Proteus, Enterococcus, Dysgonomonas and several genera in the order Bacteroidales. The MBP was most susceptible to ciprofloxacin, doxycycline, gentamicin, and meropenam. MBP exposure of human HT29 and A549 cells caused significant cytotoxicity, and bacterial growth and adherence. An acellular MBP filtrate was also cytotoxic to HT29, but not A549. Both MBP and filtrate exposures elevated the neutrophil chemoattractant IL-8. In endotracheal murine exposures, bacterial pulmonary clearance was complete after one-week. Elevation of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-a, and chemokines KC and MCP-1 occurred between 2h and 48h post-exposure, followed by restoration to baseline levels at 96h. Cytokine/chemokine signalling was accompanied by elevated blood neutrophils and monocytes at 4h and 48h, respectively. Peripheral acute phase response markers were maximal at 24h. All indicators examined returned to baseline values by 168h. In contrast to HT29, but similar to A549 observations, MBP filtrate did not induce significant murine effects with the indicators examined. The results demonstrated the potentially complex nature of MBPs and transient immunological effects during exposure. Products containing microbes should be scrutinized for pathogenic components and subjected to characterisation and quality validation prior to commercial release.


September 22, 2019  |  

Next-generation sequencing for pathogen detection and identification

Over the past decade, the field of genomics has seen such drastic improvements in sequencing chemistries that high-throughput sequencing, or next-generation sequencing (NGS), is being applied to generate data across many disciplines. NGS instruments are becoming less expensive, faster, and smaller, and therefore are being adopted in an increasing number of laboratories, including clinical laboratories. Thus far, clinical use of NGS has been mostly focused on the human genome, for purposes such as characterizing the molecular basis of cancer or for diagnosing and understanding the basis of rare genetic disorders. There are, however, an increasing number of examples whereby NGS is employed to discover novel pathogens, and these cases provide precedent for the use of NGS in microbial diagnostics. NGS has many advantages over traditional microbial diagnostic methods, such as unbiased rather than pathogen-specific protocols, ability to detect fastidious or non-culturable organisms, and ability to detect co-infections. One of the most impressive advantages of NGS is that it requires little or no prior knowledge of the pathogen, unlike many other diagnostic assays; therefore for pathogen discovery, NGS is very valuable. However, despite these advantages, there are challenges involved in implementing NGS for routine clinical microbiological diagnosis. We discuss these advantages and challenges in the context of recently described research studies.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.