fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Genome sequence of the dark pink pigmented Listia bainesii microsymbiont Methylobacterium sp. WSM2598.

Strains of a pink-pigmented Methylobacterium sp. are effective nitrogen- (N2) fixing microsymbionts of species of the African crotalarioid genus Listia. Strain WSM2598 is an aerobic, motile, Gram-negative, non-spore-forming rod isolated in 2002 from a Listia bainesii root nodule collected at Estcourt Research Station in South Africa. Here we describe the features of Methylobacterium sp. WSM2598, together with information and annotation of a high-quality draft genome sequence. The 7,669,765 bp draft genome is arranged in 5 scaffolds of 83 contigs, contains 7,236 protein-coding genes and 18 RNA-only encoding genes. This rhizobial genome is one of 100 sequenced as part of the DOE…

Read More »

Sunday, July 7, 2019

Genome sequence of the clover-nodulating Rhizobium leguminosarum bv. trifolii strain SRDI565.

Rhizobium leguminosarum bv. trifolii SRDI565 (syn. N8-J) is an aerobic, motile, Gram-negative, non-spore-forming rod. SRDI565 was isolated from a nodule recovered from the roots of the annual clover Trifolium subterraneum subsp. subterraneum grown in the greenhouse and inoculated with soil collected from New South Wales, Australia. SRDI565 has a broad host range for nodulation within the clover genus, however N2-fixation is sub-optimal with some Trifolium species and ineffective with others. Here we describe the features of R. leguminosarum bv. trifolii strain SRDI565, together with genome sequence information and annotation. The 6,905,599 bp high-quality-draft genome is arranged into 7 scaffolds of…

Read More »

Sunday, July 7, 2019

Evolutionary origins of the emergent ST796 clone of vancomycin resistant Enterococcus faecium.

From early 2012, a novel clone of vancomycin resistant Enterococcus faecium (assigned the multi locus sequence type ST796) was simultaneously isolated from geographically separate hospitals in south eastern Australia and New Zealand. Here we describe the complete genome sequence of Ef_aus0233, a representative ST796 E. faecium isolate. We used PacBio single molecule real-time sequencing to establish a high quality, fully assembled genome comprising a circular chromosome of 2,888,087 bp and five plasmids. Comparison of Ef_aus0233 to other E. faecium genomes shows Ef_aus0233 is a member of the epidemic hospital-adapted lineage and has evolved from an ST555-like ancestral progenitor by the…

Read More »

Sunday, July 7, 2019

Rare Pyrenophora teres hybridization events revealed by development of sequence-specific PCR markers.

Pyrenophora teres f. teres and P. teres f. maculata cause net form and spot form, respectively, of net blotch on barley (Hordeum vulgare). The two forms reproduce sexually, producing hybrids with genetic and pathogenic variability. Phenotypic identification of hybrids is challenging because lesions induced by hybrids on host plants resemble lesions induced by either P. teres f. teres or P. teres f. maculata. In this study, 12 sequence-specific polymerase chain reaction markers were developed based on expressed regions spread across the genome. The primers were validated using 210 P. teres isolates, 2 putative field hybrids (WAC10721 and SNB172), 50 laboratory-produced…

Read More »

Sunday, July 7, 2019

Complete genome sequence of Mesorhizobium ciceri bv. biserrulae WSM1497, an efficient nitrogen-fixing microsymbiont of the forage legume Biserrula pelecinus.

We report here the complete genome sequence of Mesorhizobium ciceri bv. biserrulae strain WSM1497, the efficient nitrogen-fixing microsymbiont and commercial inoculant in Australia of the forage legume Biserrula pelecinus The genome consists of 7.2 Mb distributed across a single chromosome (6.67 Mb) and a single plasmid (0.53 Mb). Copyright © 2017 Brewer et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Mesorhizobium sophorae ICMP 19535T, a highly specific, nitrogen-fixing symbiont of New Zealand endemic Sophora spp.

We report here the complete genome sequence of Mesorhizobium sophorae ICMP 19535(T) This strain was isolated from Sophora microphylla root nodules and can nodulate and fix nitrogen with this host and also with Sophora prostrata, Sophora longicarinata, and Clianthus puniceus The genome consists of 8.05 Mb. Copyright © 2017 De Meyer et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Mesorhizobium ciceri bv. biserrulae strain WSM1284, an efficient nitrogen-fixing microsymbiont of the pasture legume Biserrula pelecinus.

We report the complete genome sequence of Mesorhizobium ciceri bv. biserrulae strain WSM1284, a nitrogen-fixing microsymbiont of the pasture legume Biserrula pelecinus The genome consists of 6.88 Mb distributed between a single chromosome (6.33 Mb) and a single plasmid (0.55 Mb). Copyright © 2016 Haskett et al.

Read More »

Sunday, July 7, 2019

High-quality permanent draft genome sequence of Ensifer sp. PC2, isolated from a nitrogen-fixing root nodule of the legume tree (Khejri) native to the Thar Desert of India.

Ensifer sp. PC2 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a nitrogen-fixing nodule of the tree legume P. cineraria (L.) Druce (Khejri), which is a keystone species that grows in arid and semi-arid regions of the Indian Thar desert. Strain PC2 exists as a dominant saprophyte in alkaline soils of Western Rajasthan. It is fast growing, well-adapted to arid conditions and is able to form an effective symbiosis with several annual crop legumes as well as species of mimosoid trees and shrubs. Here we describe the features of Ensifer sp. PC2, together with genome sequence information…

Read More »

Sunday, July 7, 2019

Isolation and plasmid characterization of carbapenemase (IMP-4) producing Salmonella enterica Typhimurium from cats.

Carbapenem-resistant Enterobacteriaceae (CRE) are a pressing public health issue due to limited therapeutic options to treat such infections. CREs have been predominantly isolated from humans and environmental samples and they are rarely reported among companion animals. In this study we report on the isolation and plasmid characterization of carbapenemase (IMP-4) producing Salmonella enterica Typhimurium from a companion animal. Carbapenemase-producing S. enterica Typhimurium carrying blaIMP-4 was identified from a systemically unwell (index) cat and three additional cats at an animal shelter. All isolates were identical and belonged to ST19. Genome sequencing revealed the acquisition of a multidrug-resistant IncHI2 plasmid (pIMP4-SEM1) that…

Read More »

Sunday, July 7, 2019

BAC-pool sequencing and analysis confirms growth-associated QTLs in the Asian seabass genome.

The Asian seabass is an important marine food fish that has been cultured for several decades in Asia Pacific. However, the lack of a high quality reference genome has hampered efforts to improve its selective breeding. A 3D BAC pool set generated in this study was screened using 22 SSR markers located on linkage group 2 which contains a growth-related QTL region. Seventy-two clones corresponding to 22 FPC contigs were sequenced by Illumina MiSeq technology. We co-assembled the MiSeq-derived scaffolds from each FPC contig with error-corrected PacBio reads, resulting in 187 sequences covering 9.7?Mb. Eleven genes annotated within this region…

Read More »

Sunday, July 7, 2019

Assembly and transfer of tripartite integrative and conjugative genetic elements.

Integrative and conjugative elements (ICEs) are ubiquitous mobile genetic elements present as “genomic islands” within bacterial chromosomes. Symbiosis islands are ICEs that convert nonsymbiotic mesorhizobia into symbionts of legumes. Here we report the discovery of symbiosis ICEs that exist as three separate chromosomal regions when integrated in their hosts, but through recombination assemble as a single circular ICE for conjugative transfer. Whole-genome comparisons revealed exconjugants derived from nonsymbiotic mesorhizobia received three separate chromosomal regions from the donor Mesorhizobium ciceri WSM1271. The three regions were each bordered by two nonhomologous integrase attachment (att) sites, which together comprised three homologous pairs of…

Read More »

Sunday, July 7, 2019

Complete genome sequence of a Staphylococcus aureus sequence type 612 isolate from an Australian horse.

Staphylococcus aureus is a serious pathogen of humans and animals. Multilocus sequence type 612 is dominant and highly virulent in South African hospitals but relatively uncommon elsewhere. We present the complete genome sequence of methicillin-resistant Staphylococcus aureus strain SVH7513, isolated from a horse at a veterinary clinic in New South Wales, Australia.

Read More »

1 2

Subscribe for blog updates:

Archives