Menu
June 1, 2021  |  

New discoveries from closing Salmonella genomes using Pacific Biosciences continuous long reads.

The newer hierarchical genome assembly process (HGAP) performs de novo assembly using data from a single PacBio long insert library. To assess the benefits of this method, DNA from several Salmonella enterica serovars was isolated from a pure culture. Genome sequencing was performed using Pacific Biosciences RS sequencing technology. The HGAP process enabled us to close sixteen Salmonella subsp. enterica genomes and their associated mobile elements: The ten serotypes include: Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) S. Bareilly, S. Heidelberg, S. Cubana, S. Javiana and S. Typhimurium, S. Newport, S. Montevideo, S. Agona, and S. Tennessee. In addition, we were able to detect novel methyltransferases (MTases) by using the Pacific Biosciences kinetic score distributions showing that each serovar appears to have a novel methylation pattern. For example while all Salmonella serovars examined so far have methylase specific activity for 5’-GATC-3’/3’-CTAG-5’ and 5’-CAGAG-3’/3’-GTCTC-5’ (underlined base indicates a modification), S. Heidelberg is uniquely specific for 5’-ACCANCC-3’/3’-TGGTNGG-5’, while S. Typhimurium has uniquely methylase specific for 5′-GATCAG-3’/3′- CTAGTC-5′ sites, for the samples examined so far. We believe that this may be due to the unique environments and phages that these serotypes have been exposed to. Furthermore, our analysis identified and closed a variety of plasmids such as mobilization plasmids, antimicrobial resistance plasmids and IncX plasmids carrying a Type IV secretion system (T4SS). The VirB/D4 T4SS apparatus is important in that it assists with rapid dissemination of antibiotic resistance and virulence determinants. Presently, only limited information exists regarding the genotypic characterization of drug resistance in S. Heidelberg isolates derived from various host species. Here, we characterize two S. Heidelberg outbreak isolates from two different outbreaks. Both isolates contain the IncX plasmid of approximately 35 kb, and carried the genes virB1, virB2, virB3/4, virB5, virB6, virB7, virB8, virB9, virB10, virB11, virD2, and virD4, that are associated with the T4SS. In addition, the outbreak isolate associated with ground turkey carries a 4,473 bp mobilization plasmid and an incompatibility group (Inc) I1 antimicrobial resistance plasmid encoding resistance to gentamicin (aacC2), beta-lactam (bl2b_tem), streptomycin (aadAI) and tetracycline (tetA, tetR) while the outbreak isolate associated with chicken breast carries the IncI1 plasmid encoding resistance to gentamicin (aacC2), streptomycin (aadAI) and sulfisoxazole (sul1). Using this new technology we explored the genetic elements present in resistant pathogens which will achieve a better understanding of the evolution of Salmonella.


April 21, 2020  |  

A Novel Bacteriophage Exclusion (BREX) System Encoded by the pglX Gene in Lactobacillus casei Zhang.

The bacteriophage exclusion (BREX) system is a novel prokaryotic defense system against bacteriophages. To our knowledge, no study has systematically characterized the function of the BREX system in lactic acid bacteria. Lactobacillus casei Zhang is a probiotic bacterium originating from koumiss. By using single-molecule real-time sequencing, we previously identified N6-methyladenine (m6A) signatures in the genome of L. casei Zhang and a putative methyltransferase (MTase), namely, pglX This work further analyzed the genomic locus near the pglX gene and identified it as a component of the BREX system. To decipher the biological role of pglX, an L. casei Zhang pglX mutant (?pglX) was constructed. Interestingly, m6A methylation of the 5′-ACRCAG-3′ motif was eliminated in the ?pglX mutant. The wild-type and mutant strains exhibited no significant difference in morphology or growth performance in de Man-Rogosa-Sharpe (MRS) medium. A significantly higher plasmid acquisition capacity was observed for the ?pglX mutant than for the wild type if the transformed plasmids contained pglX recognition sites (i.e., 5′-ACRCAG-3′). In contrast, no significant difference was observed in plasmid transformation efficiency between the two strains when plasmids lacking pglX recognition sites were tested. Moreover, the ?pglX mutant had a lower capacity to retain the plasmids than the wild type, suggesting a decrease in genetic stability. Since the Rebase database predicted that the L. casei PglX protein was bifunctional, as both an MTase and a restriction endonuclease, the PglX protein was heterologously expressed and purified but failed to show restriction endonuclease activity. Taken together, the results show that the L. casei Zhang pglX gene is a functional adenine MTase that belongs to the BREX system.IMPORTANCELactobacillus casei Zhang is a probiotic that confers beneficial effects on the host, and it is thus increasingly used in the dairy industry. The possession of an effective bacterial immune system that can defend against invasion of phages and exogenous DNA is a desirable feature for industrial bacterial strains. The bacteriophage exclusion (BREX) system is a recently described phage resistance system in prokaryotes. This work confirmed the function of the BREX system in L. casei and that the methyltransferase (pglX) is an indispensable part of the system. Overall, our study characterizes a BREX system component gene in lactic acid bacteria. Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

Deciphering bacterial epigenomes using modern sequencing technologies.

Prokaryotic DNA contains three types of methylation: N6-methyladenine, N4-methylcytosine and 5-methylcytosine. The lack of tools to analyse the frequency and distribution of methylated residues in bacterial genomes has prevented a full understanding of their functions. Now, advances in DNA sequencing technology, including single-molecule, real-time sequencing and nanopore-based sequencing, have provided new opportunities for systematic detection of all three forms of methylated DNA at a genome-wide scale and offer unprecedented opportunities for achieving a more complete understanding of bacterial epigenomes. Indeed, as the number of mapped bacterial methylomes approaches 2,000, increasing evidence supports roles for methylation in regulation of gene expression, virulence and pathogen-host interactions.


April 21, 2020  |  

SMRT sequencing reveals differential patterns of methylation in two O111:H- STEC isolates from a hemolytic uremic syndrome outbreak in Australia.

In 1995 a severe haemolytic-uremic syndrome (HUS) outbreak in Adelaide occurred. A recent genomic analysis of Shiga toxigenic Escherichia coli (STEC) O111:H- strains 95JB1 and 95NR1 from this outbreak found that the more virulent isolate, 95NR1, harboured two additional copies of the Shiga toxin 2 (Stx2) genes encoded within prophage regions. The structure of the Stx2-converting prophages could not be fully resolved using short-read sequence data alone and it was not clear if there were other genomic differences between 95JB1 and 95NR1. In this study we have used Pacific Biosciences (PacBio) single molecule real-time (SMRT) sequencing to characterise the genome and methylome of 95JB1 and 95NR1. We completely resolved the structure of all prophages including two, tandemly inserted, Stx2-converting prophages in 95NR1 that were absent from 95JB1. Furthermore we defined all insertion sequences and found an additional IS1203 element in the chromosome of 95JB1. Our analysis of the methylome of 95NR1 and 95JB1 identified hemi-methylation of a novel motif (5′-CTGCm6AG-3′) in more than 4000 sites in the 95NR1 genome. These sites were entirely unmethylated in the 95JB1 genome, and included at least 177 potential promoter regions that could contribute to regulatory differences between the strains. IS1203 mediated deactivation of a novel type IIG methyltransferase in 95JB1 is the likely cause of the observed differential patterns of methylation between 95NR1 and 95JB1. This study demonstrates the capability of PacBio SMRT sequencing to resolve complex prophage regions and reveal the genetic and epigenetic heterogeneity within a clonal population of bacteria.


April 21, 2020  |  

Metaepigenomic analysis reveals the unexplored diversity of DNA methylation in an environmental prokaryotic community.

DNA methylation plays important roles in prokaryotes, and their genomic landscapes-prokaryotic epigenomes-have recently begun to be disclosed. However, our knowledge of prokaryotic methylation systems is focused on those of culturable microbes, which are rare in nature. Here, we used single-molecule real-time and circular consensus sequencing techniques to reveal the ‘metaepigenomes’ of a microbial community in the largest lake in Japan, Lake Biwa. We reconstructed 19 draft genomes from diverse bacterial and archaeal groups, most of which are yet to be cultured. The analysis of DNA chemical modifications in those genomes revealed 22 methylated motifs, nine of which were novel. We identified methyltransferase genes likely responsible for methylation of the novel motifs, and confirmed the catalytic specificities of four of them via transformation experiments using synthetic genes. Our study highlights metaepigenomics as a powerful approach for identification of the vast unexplored variety of prokaryotic DNA methylation systems in nature.


April 21, 2020  |  

The complete genome and methylome of Helicobacter pylori hpNEAfrica strain HP14039

Background Helicobacter pylori is a Gram-negative bacterium which mainly causes peptic ulcer disease in human, but is also the predominant cause of stomach cancer. It has been coevolving with human since 120,000 years and, according to Multi-locus sequence typing (MLST), H. pylori can be classified into seven major population types, namely, hpAfrica1, hpAfrica2, hpNEAfrica, hpEastAsia, hpAsia2, hpEurope and hpSahul. Helicobacter pylori harbours a large number of restriction-modification (R-M) systems. The methyltransferase (MTase) unit plays a significant role in gene regulation and also possibly modulates pathogenicity. The diversity in MTase can act as geomarkers to correlate strains with the phylogeographic origins. This paper describes the complete genome sequence and methylome of gastric pathogen H. pylori belonging to the population hpNEAfrica. Results In this paper, we present the complete genome sequence and the methylome profile of H. pylori hpNEAfrica strain HP14039, isolated from a patient who was born in Somalia and likely to be infected locally during early childhood prior to migration. The genome of HP14039 consists of 1,678,260 bp with 1574 coding genes and 38.7% GC content. The sequence analysis showed that this strain lacks the cag pathogenicity island. The vacA gene is of S2M2 type. We have also identified 15 methylation motifs, including WCANHNNNNTG and CTANNNNNNNTAYG that were not previously described. Conclusions We have described the complete genome of H. pylori strain HP14039. The information regarding phylo-geography, methylome and associated metadata would help scientific community to study more about hpNEAfrica population type.


September 22, 2019  |  

Metagenomic binning and association of plasmids with bacterial host genomes using DNA methylation.

Shotgun metagenomics methods enable characterization of microbial communities in human microbiome and environmental samples. Assembly of metagenome sequences does not output whole genomes, so computational binning methods have been developed to cluster sequences into genome ‘bins’. These methods exploit sequence composition, species abundance, or chromosome organization but cannot fully distinguish closely related species and strains. We present a binning method that incorporates bacterial DNA methylation signatures, which are detected using single-molecule real-time sequencing. Our method takes advantage of these endogenous epigenetic barcodes to resolve individual reads and assembled contigs into species- and strain-level bins. We validate our method using synthetic and real microbiome sequences. In addition to genome binning, we show that our method links plasmids and other mobile genetic elements to their host species in a real microbiome sample. Incorporation of DNA methylation information into shotgun metagenomics analyses will complement existing methods to enable more accurate sequence binning.


September 22, 2019  |  

Defining cell identity with single cell omics.

Cells are a fundamental unit of life, and the ability to study the phenotypes and behaviors of individual cells is crucial to understanding the workings of complex biological systems. Cell phenotypes (epigenomic, transcriptomic, proteomic, and metabolomic) exhibit dramatic heterogeneity between and within the different cell types and states underlying cellular functional diversity. Cell genotypes can also display heterogeneity throughout an organism, in the form of somatic genetic variation-most notably in the emergence and evolution of tumors. Recent technical advances in single-cell isolation and the development of omics approaches sensitive enough to reveal these aspects of cell identity have enabled a revolution in the study of multicellular systems. In this review, we discuss the technologies available to resolve the genomes, epigenomes, transcriptomes, proteomes, and metabolomes of single cells from a wide variety of living systems.© 2018 The Authors. Proteomics Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


September 22, 2019  |  

PacBio sequencing and its applications.

Single-molecule, real-time sequencing developed by Pacific BioSciences offers longer read lengths than the second-generation sequencing (SGS) technologies, making it well-suited for unsolved problems in genome, transcriptome, and epigenetics research. The highly-contiguous de novo assemblies using PacBio sequencing can close gaps in current reference assemblies and characterize structural variation (SV) in personal genomes. With longer reads, we can sequence through extended repetitive regions and detect mutations, many of which are associated with diseases. Moreover, PacBio transcriptome sequencing is advantageous for the identification of gene isoforms and facilitates reliable discoveries of novel genes and novel isoforms of annotated genes, due to its ability to sequence full-length transcripts or fragments with significant lengths. Additionally, PacBio’s sequencing technique provides information that is useful for the direct detection of base modifications, such as methylation. In addition to using PacBio sequencing alone, many hybrid sequencing strategies have been developed to make use of more accurate short reads in conjunction with PacBio long reads. In general, hybrid sequencing strategies are more affordable and scalable especially for small-size laboratories than using PacBio Sequencing alone. The advent of PacBio sequencing has made available much information that could not be obtained via SGS alone. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.


September 22, 2019  |  

The non-specific adenine DNA methyltransferase M.EcoGII.

We describe the cloning, expression and characterization of the first truly non-specific adenine DNA methyltransferase, M.EcoGII. It is encoded in the genome of the pathogenic strain Escherichia coli O104:H4 C227-11, where it appears to reside on a cryptic prophage, but is not expressed. However, when the gene encoding M.EcoGII is expressed in vivo – using a high copy pRRS plasmid vector and a methylation-deficient E. coli host-extensive in vivo adenine methylation activity is revealed. M.EcoGII methylates adenine residues in any DNA sequence context and this activity extends to dA and rA bases in either strand of a DNA:RNA-hybrid oligonucleotide duplex and to rA bases in RNAs prepared by in vitro transcription. Using oligonucleotide and bacteriophage M13mp18 virion DNA substrates, we find that M.EcoGII also methylates single-stranded DNA in vitro and that this activity is only slightly less robust than that observed using equivalent double-stranded DNAs. In vitro assays, using purified recombinant M.EcoGII enzyme, demonstrate that up to 99% of dA bases in duplex DNA substrates can be methylated thereby rendering them insensitive to cleavage by multiple restriction endonucleases. These properties suggest that the enzyme could also be used for high resolution mapping of protein binding sites in DNA and RNA substrates.© The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.


September 22, 2019  |  

Comparative genome and methylome analysis reveals restriction/modification system diversity in the gut commensal Bifidobacterium breve.

Bifidobacterium breve represents one of the most abundant bifidobacterial species in the gastro-intestinal tract of breast-fed infants, where their presence is believed to exert beneficial effects. In the present study whole genome sequencing, employing the PacBio Single Molecule, Real-Time (SMRT) sequencing platform, combined with comparative genome analysis allowed the most extensive genetic investigation of this taxon. Our findings demonstrate that genes encoding Restriction/Modification (R/M) systems constitute a substantial part of the B. breve variable gene content (or variome). Using the methylome data generated by SMRT sequencing, combined with targeted Illumina bisulfite sequencing (BS-seq) and comparative genome analysis, we were able to detect methylation recognition motifs and assign these to identified B. breve R/M systems, where in several cases such assignments were confirmed by restriction analysis. Furthermore, we show that R/M systems typically impose a very significant barrier to genetic accessibility of B. breve strains, and that cloning of a methyltransferase-encoding gene may overcome such a barrier, thus allowing future functional investigations of members of this species.


September 22, 2019  |  

The DNA methylome of the hyperthermoacidophilic crenarchaeon Sulfolobus acidocaldarius.

DNA methylation is the most common epigenetic modification observed in the genomic DNA (gDNA) of prokaryotes and eukaryotes. Methylated nucleobases, N6-methyl-adenine (m6A), N4-methyl-cytosine (m4C), and 5-methyl-cytosine (m5C), detected on gDNA represent the discrimination mark between self and non-self DNA when they are part of restriction-modification systems in prokaryotes (Bacteria and Archaea). In addition, m5C in Eukaryotes and m6A in Bacteria play an important role in the regulation of key cellular processes. Although archaeal genomes present modified bases as in the two other domains of life, the significance of DNA methylations as regulatory mechanisms remains largely uncharacterized in Archaea. Here, we began by investigating the DNA methylome of Sulfolobus acidocaldarius. The strategy behind this initial study entailed the use of combined digestion assays, dot blots, and genome resequencing, which utilizes specific restriction enzymes, antibodies specifically raised against m6A and m5C and single-molecule real-time (SMRT) sequencing, respectively, to identify DNA methylations occurring in exponentially growing cells. The previously identified restriction-modification system, specific of S. acidocaldarius, was confirmed by digestion assay and SMRT sequencing while, the presence of m6A was revealed by dot blot and identified on the characteristic Dam motif by SMRT sequencing. No m5C was detected by dot blot under the conditions tested. Furthermore, by comparing the distribution of both detected methylations along the genome and, by analyzing DNA methylation profiles in synchronized cells, we investigated in which cellular pathways, in particular the cell cycle, this m6A methylation could be a key player. The analysis of sequencing data rejected a role for m6A methylation in another defense system and also raised new questions about a potential involvement of this modification in the regulation of other biological functions in S. acidocaldarius.


September 22, 2019  |  

Culture-facilitated comparative genomics of the facultative symbiont Hamiltonella defensa.

Many insects host facultative, bacterial symbionts that confer conditional fitness benefits to their hosts. Hamiltonella defensa is a common facultative symbiont of aphids that provides protection against parasitoid wasps. Protection levels vary among strains of H. defensa that are also differentially infected by bacteriophages named APSEs. However, little is known about trait variation among strains because only one isolate has been fully sequenced. Generating complete genomes for facultative symbionts is hindered by relatively large genome sizes but low abundances in hosts like aphids that are very small. Here, we took advantage of methods for culturing H. defensa outside of aphids to generate complete genomes and transcriptome data for four strains of H. defensa from the pea aphid Acyrthosiphon pisum. Chosen strains also spanned the breadth of the H. defensa phylogeny and differed in strength of protection conferred against parasitoids. Results indicated that strains shared most genes with roles in nutrient acquisition, metabolism, and essential housekeeping functions. In contrast, the inventory of mobile genetic elements varied substantially, which generated strain specific differences in gene content and genome architecture. In some cases, specific traits correlated with differences in protection against parasitoids, but in others high variation between strains obscured identification of traits with likely roles in defense. Transcriptome data generated continuous distributions to genome assemblies with some genes that were highly expressed and others that were not. Single molecule real-time sequencing further identified differences in DNA methylation patterns and restriction modification systems that provide defense against phage infection.


September 22, 2019  |  

Characterizing the DNA methyltransferases of Haloferax volcanii via bioinformatics, gene deletion, and SMRT Sequencing.

DNA methyltransferases (MTases), which catalyze the methylation of adenine and cytosine bases in DNA, can occur in bacteria and archaea alongside cognate restriction endonucleases (REases) in restriction-modification (RM) systems or independently as orphan MTases. Although DNA methylation and MTases have been well-characterized in bacteria, research into archaeal MTases has been limited. A previous study examined the genomic DNA methylation patterns (methylome) of the halophilic archaeonHaloferax volcanii, a model archaeal system which can be easily manipulated in laboratory settings, via single-molecule real-time (SMRT) sequencing and deletion of a putative MTase gene (HVO_A0006). In this follow-up study, we deleted other putative MTase genes inH. volcaniiand sequenced the methylomes of the resulting deletion mutants via SMRT sequencing to characterize the genes responsible for DNA methylation. The results indicate that deletion of putative RM genesHVO_0794,HVO_A0006, andHVO_A0237in a single strain abolished methylation of the sole cytosine motif in the genome (Cm4TAG). Amino acid alignments demonstrated thatHVO_0794shares homology with characterized cytosine CTAG MTases in other organisms, indicating that this MTase is responsible for Cm4TAG methylation inH. volcanii. The CTAG motif has high density at only one of the origins of replication, and there is no relative increase in CTAG motif frequency in the genome ofH. volcanii, indicating that CTAG methylation might not have effectively taken over the role of regulating DNA replication and mismatch repair in the organism as previously predicted. Deletion of the putative Type I RM operonrmeRMS(HVO_2269-2271) resulted in abolished methylation of the adenine motif in the genome (GCAm6BN6VTGC). Alignments of the MTase (HVO_2270) and site specificity subunit (HVO_2271) demonstrate homology with other characterized Type I MTases and site specificity subunits, indicating that thermeRMSoperon is responsible for adenine methylation inH. volcanii. Together with HVO_0794, these genes appear to be responsible for all detected methylation inH. volcanii, even though other putative MTases (HVO_C0040,HVO_A0079) share homology with characterized MTases in other organisms. We also report the construction of a multi-RM deletion mutant (?RM), with multiple RM genes deleted and with no methylation detected via SMRT sequencing, which we anticipate will be useful for future studies on DNA methylation inH. volcanii.


September 22, 2019  |  

N4-cytosine DNA methylation regulates transcription and pathogenesis in Helicobacter pylori.

Many bacterial genomes exclusively display an N4-methyl cytosine base (m4C), whose physiological significance is not yet clear. Helicobacter pylori is a carcinogenic bacterium and the leading cause of gastric cancer in humans. Helicobacter pylori strain 26695 harbors a single m4C cytosine methyltransferase, M2.HpyAII which recognizes 5′ TCTTC 3′ sequence and methylates the first cytosine residue. To understand the role of m4C modification, M2.hpyAII deletion strain was constructed. Deletion strain displayed lower adherence to host AGS cells and reduced potential to induce inflammation and apoptosis. M2.hpyAII gene deletion strain exhibited reduced capacity for natural transformation, which was rescued in the complemented strain carrying an active copy of M2.hpyAII gene in the genome. Genome-wide gene expression and proteomic analysis were carried out to discern the possible reasons behind the altered phenotype of the M2.hpyAII gene deletion strain. Upon the loss of m4C modification a total of 102 genes belonging to virulence, ribosome assembly and cellular components were differentially expressed. The present study adds a functional role for the presence of m4C modification in H. pylori and provides the first evidence that m4C signal acts as a global epigenetic regulator in H. pylori.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.