Melissa Laird Smith from Icahn Institute at Mt. Sinai reviews her work studying the genetic background of immune response by characterizing population diversity at the immunoglobulin heavy chain locus. Webinar registration required.
In this AGBT 2017 talk, PacBio CSO Jonas Korlach provided a technology roadmap for the Sequel System, including plans the continue performance and throughput increases through early 2019. Per SMRT Cell throughput of the Sequel System is expected to double this year and again next year. Together with a new higher-capacity SMRT Cell expected to be released by the end of 2018, these improvements result in a ~30-fold increase or ~150 Gb / SMRT Cell allowing a real $1000 real de novo human genome assembly. Also discussed: Additional application protocol improvements, new chemistry and software updates, and a look at…
Tremendous flexibility is maintained in the human proteome via alternative splicing, and cancer genomes often subvert this flexibility to promote survival. Identification and annotation of cancer-specific mRNA isoforms is critical to understanding how mutations in the genome affect the biology of cancer cells. While microarrays and other NGS-based methods have become useful for studying transcriptomes, these technologies yield short, fragmented transcripts that remain a challenge for accurate, complete reconstruction of splice variants. The Iso-Seq method developed at PacBio offers the only solution for direct sequencing of full-length, single-molecule cDNA sequences needed to discover biomarkers for early detection and cancer stratification,…
In this ASHG workshop presentation , Jonas Korlach, CSO of PacBio, walked attendees through recent product updates and the coming technology roadmap. The Sequel System 6.0 release offered major improvements to accuracy, throughput, structural variant calling, and large-insert libraries, he said, showing examples of 35 kb libraries. Looking ahead, Korlach said that the V2 express library preparation product should be available early in 2019, with the new 8M SMRT Cell being introduced sometime later.
To start Day 1 of the PacBio User Group Meeting, Jonas Korlach, PacBio CSO, provides an update on the latest releases and performance metrics for the Sequel II System. The longest reads generated on this system with the SMRT Cell 8M now go beyond 175,000 bases, while maintaining extremely high accuracy. HiFi mode, for example, uses circular consensus sequencing to achieve accuracy of Q40 or even Q50.
Studying microbial genomics and infectious disease? Learn how the PacBio Sequel II System can help advance your research, with first-hand perspectives from scientists who are investigating SARS-CoV-2 and COVID-19. In this webinar, Melissa Laird-Smith (Mt. Sinai School of Medicine) discusses her work evaluating the impact of host immune restriction in health and disease with high resolution HLA typing. She is joined by Corey Watson (University of Louisville School of Medicine) who talks about overcoming complexity to elucidate the role of IGH haplotype diversity in antibody-mediated immunity. Hosted by Meredith Ashby, Director of Microbial Genomics at PacBio. Access additional PacBio resources…
In this webinar, Adam Ameur of SciLifeLab at Uppsala University shares how he uses Single Molecule, Real-Time (SMRT) Sequencing applications for medical diagnostics and human genetics research, including sequencing of single genes and de novo assembly of human genomes as well as a new method for detection of CRISPR-Cas9 off-targets.
New technologies and analysis methods are enabling genomic structural variants (SVs) to be detected with ever-increasing accuracy, resolution, and comprehensiveness. Translating these methods to routine research and clinical practice requires robust benchmark sets. We developed the first benchmark set for identification of both false negative and false positive germline SVs, which complements recent efforts emphasizing increasingly comprehensive characterization of SVs. To create this benchmark for a broadly consented son in a Personal Genome Project trio with broadly available cells and DNA, the Genome in a Bottle (GIAB) Consortium integrated 19 sequence-resolved variant calling methods, both alignment- and de novo assembly-based,…