Menu
July 7, 2019  |  

Evolutionary history of the global emergence of the Escherichia coli epidemic clone ST131.

Escherichia colisequence type 131 (ST131) has emerged globally as the most predominant extraintestinal pathogenic lineage within this clinically important species, and its association with fluoroquinolone and extended-spectrum cephalosporin resistance impacts significantly on treatment. The evolutionary histories of this lineage, and of important antimicrobial resistance elements within it, remain unclearly defined. This study of the largest worldwide collection (n= 215) of sequenced ST131E. coliisolates to date demonstrates that the clonal expansion of two previously recognized antimicrobial-resistant clades, C1/H30R and C2/H30Rx, started around 25 years ago, consistent with the widespread introduction of fluoroquinolones and extended-spectrum cephalosporins in clinical medicine. These two clades appear to have emerged in the United States, with the expansion of the C2/H30Rx clade driven by the acquisition of ablaCTX-M-15-containing IncFII-like plasmid that has subsequently undergone extensive rearrangement. Several other evolutionary processes influencing the trajectory of this drug-resistant lineage are described, including sporadic acquisitions of CTX-M resistance plasmids and chromosomal integration ofblaCTX-Mwithin subclusters followed by vertical evolution. These processes are also occurring for another family of CTX-M gene variants more recently observed among ST131, theblaCTX-M-14/14-likegroup. The complexity of the evolutionary history of ST131 has important implications for antimicrobial resistance surveillance, epidemiological analysis, and control of emerging clinical lineages ofE. coli These data also highlight the global imperative to reduce specific antibiotic selection pressures and demonstrate the important and varied roles played by plasmids and other mobile genetic elements in the perpetuation of antimicrobial resistance within lineages.IMPORTANCEEscherichia coli, perennially a major bacterial pathogen, is becoming increasingly difficult to manage due to emerging resistance to all preferred antimicrobials. Resistance is concentrated within specificE. colilineages, such as sequence type 131 (ST131). Clarification of the genetic basis for clonally associated resistance is key to devising intervention strategies. We used high-resolution genomic analysis of a large global collection of ST131 isolates to define the evolutionary history of extended-spectrum beta-lactamase production in ST131. We documented diverse contributory genetic processes, including stable chromosomal integrations of resistance genes, persistence and evolution of mobile resistance elements within sublineages, and sporadic acquisition of different resistance elements. Both global distribution and regional segregation were evident. The diversity of resistance element acquisition and propagation within ST131 indicates a need for control and surveillance strategies that target both bacterial strains and mobile genetic elements. Copyright © 2016 Stoesser et al.


July 7, 2019  |  

Alpha-CENTAURI: assessing novel centromeric repeat sequence variation with long read sequencing.

Long arrays of near-identical tandem repeats are a common feature of centromeric and subtelomeric regions in complex genomes. These sequences present a source of repeat structure diversity that is commonly ignored by standard genomic tools. Unlike reads shorter than the underlying repeat structure that rely on indirect inference methods, e.g. assembly, long reads allow direct inference of satellite higher order repeat structure. To automate characterization of local centromeric tandem repeat sequence variation we have designed Alpha-CENTAURI (ALPHA satellite CENTromeric AUtomated Repeat Identification), that takes advantage of Pacific Bioscience long-reads from whole-genome sequencing datasets. By operating on reads prior to assembly, our approach provides a more comprehensive set of repeat-structure variants and is not impacted by rearrangements or sequence underrepresentation due to misassembly.We demonstrate the utility of Alpha-CENTAURI in characterizing repeat structure for alpha satellite containing reads in the hydatidiform mole (CHM1, haploid-like) genome. The pipeline is designed to report local repeat organization summaries for each read, thereby monitoring rearrangements in repeat units, shifts in repeat orientation and sites of array transition into non-satellite DNA, typically defined by transposable element insertion. We validate the method by showing consistency with existing centromere high order repeat references. Alpha-CENTAURI can, in principle, run on any sequence data, offering a method to generate a sequence repeat resolution that could be readily performed using consensus sequences available for other satellite families in genomes without high-quality reference assemblies.Documentation and source code for Alpha-CENTAURI are freely available at http://github.com/volkansevim/alpha-CENTAURI CONTACT: ali.bashir@mssm.eduSupplementary information: Supplementary data are available at Bioinformatics online.© The Author 2016. Published by Oxford University Press.


July 7, 2019  |  

Structure of Type IIL restriction-modification enzyme MmeI in complex with DNA has implications for engineering new specificities.

The creation of restriction enzymes with programmable DNA-binding and -cleavage specificities has long been a goal of modern biology. The recently discovered Type IIL MmeI family of restriction-and-modification (RM) enzymes that possess a shared target recognition domain provides a framework for engineering such new specificities. However, a lack of structural information on Type IIL enzymes has limited the repertoire that can be rationally engineered. We report here a crystal structure of MmeI in complex with its DNA substrate and an S-adenosylmethionine analog (Sinefungin). The structure uncovers for the first time the interactions that underlie MmeI-DNA recognition and methylation (5′-TCCRAC-3′; R = purine) and provides a molecular basis for changing specificity at four of the six base pairs of the recognition sequence (5′-TCCRAC-3′). Surprisingly, the enzyme is resilient to specificity changes at the first position of the recognition sequence (5′-TCCRAC-3′). Collectively, the structure provides a basis for engineering further derivatives of MmeI and delineates which base pairs of the recognition sequence are more amenable to alterations than others.


July 7, 2019  |  

Extensive sequencing of seven human genomes to characterize benchmark reference materials.

The Genome in a Bottle Consortium, hosted by the National Institute of Standards and Technology (NIST) is creating reference materials and data for human genome sequencing, as well as methods for genome comparison and benchmarking. Here, we describe a large, diverse set of sequencing data for seven human genomes; five are current or candidate NIST Reference Materials. The pilot genome, NA12878, has been released as NIST RM 8398. We also describe data from two Personal Genome Project trios, one of Ashkenazim Jewish ancestry and one of Chinese ancestry. The data come from 12 technologies: BioNano Genomics, Complete Genomics paired-end and LFR, Ion Proton exome, Oxford Nanopore, Pacific Biosciences, SOLiD, 10X Genomics GemCode WGS, and Illumina exome and WGS paired-end, mate-pair, and synthetic long reads. Cell lines, DNA, and data from these individuals are publicly available. Therefore, we expect these data to be useful for revealing novel information about the human genome and improving sequencing technologies, SNP, indel, and structural variant calling, and de novo assembly.


July 7, 2019  |  

First report of blaIMP-14 on a plasmid harboring multiple drug resistance genes in Escherichia coli ST131.

The blaIMP-14 carbapenem resistance gene has largely previously been observed in Pseudomonas aeruginosa and Acinetobacter spp. As part of global surveillance and sequencing of carbapenem-resistant E. coli, we identified an ST131 strain harboring blaIMP-14 within a class 1 integron, itself nested within a ~54kb multi-drug resistance region on an epidemic IncA/C2 plasmid. The emergence of blaIMP-14 in this context in the ST131 lineage is of potential clinical concern. Copyright © 2016 Stoesser et al.


July 7, 2019  |  

Use of multiple sequencing technologies to produce a high-quality genome of the fungus Pseudogymnoascus destructans, the causative agent of bat white-nose syndrome.

White-nose syndrome has recently emerged as one of the most devastating wildlife diseases recorded, causing widespread mortality in numerous bat species throughout eastern North America. Here, we present an improved reference genome of the fungal pathogen Pseudogymnoascus destructans for use in comparative genomic studies. Copyright © 2016 Drees et al.


July 7, 2019  |  

Complete sequencing of plasmids containing blaOXA-163 and blaOXA-48 in Escherichia coli ST131.

OXA-48-like enzymes have emerged as important extended-spectrum ß-lactamases/carbapenemases in E. coli ST131. We report the structure of the first fully sequenced blaOXA-163 plasmid, and of two other blaOXA-48 plasmids in this lineage. blaOXA-163 was located on a 71kb IncN plasmid with other resistance genes. blaOXA-48 was present on IncL/M plasmids, genetically similar to other blaOXA-48 plasmid sequences, and consistent with inter-species/inter-lineage spread. The presence of blaOXA-48-like genes on epidemic plasmids in ST131 is of concern. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Genome sequence of Phormia regina Meigen (Diptera: Calliphoridae): implications for medical, veterinary and forensic research.

Blow flies (Diptera: Calliphoridae) are important medical, veterinary and forensic insects encompassing 8 % of the species diversity observed in the calyptrate insects. Few genomic resources exist to understand the diversity and evolution of this group.We present the hybrid (short and long reads) draft assemblies of the male and female genomes of the common North American blow fly, Phormia regina (Diptera: Calliphoridae). The 550 and 534 Mb draft assemblies contained 8312 and 9490 predicted genes in the female and male genomes, respectively; including?>?93 % conserved eukaryotic genes. Putative X and Y chromosomes (21 and 14 Mb, respectively) were assembled and annotated. The P. regina genomes appear to contain few mobile genetic elements, an almost complete absence of SINEs, and most of the repetitive landscape consists of simple repetitive sequences. Candidate gene approaches were undertaken to annotate insecticide resistance, sex-determining, chemoreceptors, and antimicrobial peptides.This work yielded a robust, reliable reference calliphorid genome from a species located in the middle of a calliphorid phylogeny. By adding an additional blow fly genome, the ability to tease apart what might be true of general calliphorids vs. what is specific of two distinct lineages now exists. This resource will provide a strong foundation for future studies into the evolution, population structure, behavior, and physiology of all blow flies.


July 7, 2019  |  

Capturing pairwise and multi-way chromosomal conformations using chromosomal walks.

Chromosomes are folded into highly compacted structures to accommodate physical constraints within nuclei and to regulate access to genomic information. Recently, global mapping of pairwise contacts showed that loops anchoring topological domains (TADs) are highly conserved between cell types and species. Whether pairwise loops synergize to form higher-order structures is still unclear. Here we develop a conformation capture assay to study higher-order organization using chromosomal walks (C-walks) that link multiple genomic loci together into proximity chains in human and mouse cells. This approach captures chromosomal structure at varying scales. Inter-chromosomal contacts constitute only 7-10% of the pairs and are restricted by interfacing TADs. About half of the C-walks stay within one chromosome, and almost half of those are restricted to intra-TAD spaces. C-walks that couple 2-4 TADs indicate stochastic associations between transcriptionally active, early replicating loci. Targeted analysis of thousands of 3-walks anchored at highly expressed genes support pairwise, rather than hub-like, chromosomal topology at active loci. Polycomb-repressed Hox domains are shown by the same approach to enrich for synergistic hubs. Together, the data indicate that chromosomal territories, TADs, and intra-TAD loops are primarily driven by nested, possibly dynamic, pairwise contacts.


July 7, 2019  |  

svclassify: a method to establish benchmark structural variant calls.

The human genome contains variants ranging in size from small single nucleotide polymorphisms (SNPs) to large structural variants (SVs). High-quality benchmark small variant calls for the pilot National Institute of Standards and Technology (NIST) Reference Material (NA12878) have been developed by the Genome in a Bottle Consortium, but no similar high-quality benchmark SV calls exist for this genome. Since SV callers output highly discordant results, we developed methods to combine multiple forms of evidence from multiple sequencing technologies to classify candidate SVs into likely true or false positives. Our method (svclassify) calculates annotations from one or more aligned bam files from many high-throughput sequencing technologies, and then builds a one-class model using these annotations to classify candidate SVs as likely true or false positives.We first used pedigree analysis to develop a set of high-confidence breakpoint-resolved large deletions. We then used svclassify to cluster and classify these deletions as well as a set of high-confidence deletions from the 1000 Genomes Project and a set of breakpoint-resolved complex insertions from Spiral Genetics. We find that likely SVs cluster separately from likely non-SVs based on our annotations, and that the SVs cluster into different types of deletions. We then developed a supervised one-class classification method that uses a training set of random non-SV regions to determine whether candidate SVs have abnormal annotations different from most of the genome. To test this classification method, we use our pedigree-based breakpoint-resolved SVs, SVs validated by the 1000 Genomes Project, and assembly-based breakpoint-resolved insertions, along with semi-automated visualization using svviz.We find that candidate SVs with high scores from multiple technologies have high concordance with PCR validation and an orthogonal consensus method MetaSV (99.7 % concordant), and candidate SVs with low scores are questionable. We distribute a set of 2676 high-confidence deletions and 68 high-confidence insertions with high svclassify scores from these call sets for benchmarking SV callers. We expect these methods to be particularly useful for establishing high-confidence SV calls for benchmark samples that have been characterized by multiple technologies.


July 7, 2019  |  

Genome sequence of the necrotrophic plant pathogen Alternaria brassicicola Abra43.

Alternaria brassicicola causes dark spot (or black spot) disease, which is one of the most common and destructive fungal diseases of Brassicaceae spp. worldwide. Here, we report the draft genome sequence of strain Abra43. The assembly comprises 29 scaffolds, with an N50 value of 2.1 Mb. The assembled genome was 31,036,461 bp in length, with a G+C content of 50.85%.


July 7, 2019  |  

A draft genome sequence for the Ixodes scapularis cell line, ISE6

Background: The tick cell line ISE6, derived from Ixodes scapularis, is commonly used for amplification and detection of arboviruses in environmental or clinical samples. Methods: To assist with sequence-based assays, we sequenced the ISE6 genome with single-molecule, long-read technology. Results: The draft assembly appears near complete based on gene content analysis, though it appears to lack some instances of repeats in this highly repetitive genome. The assembly appears to have separated the haplotypes at many loci. DNA short read pairs, used for validation only, mapped to the cell line assembly at a higher rate than they mapped to the Ixodes scapularis reference genome sequence. Conclusions: The assembly could be useful for filtering host genome sequence from sequence data obtained from cells infected with pathogens.


July 7, 2019  |  

Moving forward: recent developments for the ferret biomedical research model.

Since the initial report in 1911, the domestic ferret has become an invaluable biomedical research model. While widely recognized for its utility in influenza virus research, ferrets are used for a variety of infectious and noninfectious disease models due to the anatomical, metabolic, and physiological features they share with humans and their susceptibility to many human pathogens. However, there are limitations to the model that must be overcome for maximal utility for the scientific community. Here, we describe important recent advances that will accelerate biomedical research with this animal model. Copyright © 2018 Albrecht et al.


July 7, 2019  |  

Allele-level KIR genotyping of more than a million samples: Workflow, algorithm, and observations.

The killer-cell immunoglobulin-like receptor (KIR) genes regulate natural killer cell activity, influencing predisposition to immune mediated disease, and affecting hematopoietic stem cell transplantation (HSCT) outcome. Owing to the complexity of the KIR locus, with extensive gene copy number variation (CNV) and allelic diversity, high-resolution characterization of KIR has so far been applied only to relatively small cohorts. Here, we present a comprehensive high-throughput KIR genotyping approach based on next generation sequencing. Through PCR amplification of specific exons, our approach delivers both copy numbers of the individual genes and allelic information for every KIR gene. Ten-fold replicate analysis of a set of 190 samples revealed a precision of 99.9%. Genotyping of an independent set of 360 samples resulted in an accuracy of more than 99% taking into account consistent copy number prediction. We applied the workflow to genotype 1.8 million stem cell donor registry samples. We report on the observed KIR allele diversity and relative abundance of alleles based on a subset of more than 300,000 samples. Furthermore, we identified more than 2,000 previously unreported KIR variants repeatedly in independent samples, underscoring the large diversity of the KIR region that awaits discovery. This cost-efficient high-resolution KIR genotyping approach is now applied to samples of volunteers registering as potential donors for HSCT. This will facilitate the utilization of KIR as additional selection criterion to improve unrelated donor stem cell transplantation outcome. In addition, the approach may serve studies requiring high-resolution KIR genotyping, like population genetics and disease association studies.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.