October 23, 2019  |  

Streamlined ex vivo and in vivo genome editing in mouse embryos using recombinant adeno-associated viruses.

Recent advances using CRISPR-Cas9 approaches have dramatically enhanced the ease for genetic manipulation in rodents. Notwithstanding, the methods to deliver nucleic acids into pre-implantation embryos have hardly changed since the original description of mouse transgenesis more than 30 years ago. Here we report a novel strategy to generate genetically modified mice by transduction of CRISPR-Cas9 components into pre-implantation mouse embryos via recombinant adeno-associated viruses (rAAVs). Using this approach, we efficiently generated a variety of targeted mutations in explanted embryos, including indel events produced by non-homologous end joining and tailored mutations using homology-directed repair. We also achieved gene modification in vivo by direct delivery of rAAV particles into the oviduct of pregnant females. Our approach greatly simplifies the generation of genetically modified mice and, more importantly, opens the door for streamlined gene editing in other mammalian species.


October 23, 2019  |  

Efficient CRISPR/Cas9-mediated editing of trinucleotide repeat expansion in myotonic dystrophy patient-derived iPS and myogenic cells.

CRISPR/Cas9 is an attractive platform to potentially correct dominant genetic diseases by gene editing with unprecedented precision. In the current proof-of-principle study, we explored the use of CRISPR/Cas9 for gene-editing in myotonic dystrophy type-1 (DM1), an autosomal-dominant muscle disorder, by excising the CTG-repeat expansion in the 3′-untranslated-region (UTR) of the human myotonic dystrophy protein kinase (DMPK) gene in DM1 patient-specific induced pluripotent stem cells (DM1-iPSC), DM1-iPSC-derived myogenic cells and DM1 patient-specific myoblasts. To eliminate the pathogenic gain-of-function mutant DMPK transcript, we designed a dual guide RNA based strategy that excises the CTG-repeat expansion with high efficiency, as confirmed by Southern blot and single molecule real-time (SMRT) sequencing. Correction efficiencies up to 90% could be attained in DM1-iPSC as confirmed at the clonal level, following ribonucleoprotein (RNP) transfection of CRISPR/Cas9 components without the need for selective enrichment. Expanded CTG repeat excision resulted in the disappearance of ribonuclear foci, a quintessential cellular phenotype of DM1, in the corrected DM1-iPSC, DM1-iPSC-derived myogenic cells and DM1 myoblasts. Consequently, the normal intracellular localization of the muscleblind-like splicing regulator 1 (MBNL1) was restored, resulting in the normalization of splicing pattern of SERCA1. This study validates the use of CRISPR/Cas9 for gene editing of repeat expansions.


September 22, 2019  |  

Revertant mosaicism repairs skin lesions in a patient with keratitis-ichthyosis-deafness syndrome by second-site mutations in connexin 26.

Revertant mosaicism (RM) is a naturally occurring phenomenon where the pathogenic effect of a germline mutation is corrected by a second somatic event. Development of healthy-looking skin due to RM has been observed in patients with various inherited skin disorders, but not in connexin-related disease. We aimed to clarify the underlying molecular mechanisms of suspected RM in the skin of a patient with keratitis-ichthyosis-deafness (KID) syndrome. The patient was diagnosed with KID syndrome due to characteristic skin lesions, hearing deficiency and keratitis. Investigation of GJB2 encoding connexin (Cx) 26 revealed heterozygosity for the recurrent de novo germline mutation, c.148G?>?A, p.Asp50Asn. At age 20, the patient developed spots of healthy-looking skin that grew in size and number within widespread erythrokeratodermic lesions. Ultra-deep sequencing of two healthy-looking skin biopsies identified five somatic nonsynonymous mutations, independently present in cis with the p.Asp50Asn mutation. Functional studies of Cx26 in HeLa cells revealed co-expression of Cx26-Asp50Asn and wild-type Cx26 in gap junction channel plaques. However, Cx26-Asp50Asn with the second-site mutations identified in the patient displayed no formation of gap junction channel plaques. We argue that the second-site mutations independently inhibit Cx26-Asp50Asn expression in gap junction channels, reverting the dominant negative effect of the p.Asp50Asn mutation. To our knowledge, this is the first time RM has been reported to result in the development of healthy-looking skin in a patient with KID syndrome. © The Author 2017. Published by Oxford University Press.


September 22, 2019  |  

Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics.

Short read massive parallel sequencing has emerged as a standard diagnostic tool in the medical setting. However, short read technologies have inherent limitations such as GC bias, difficulties mapping to repetitive elements, trouble discriminating paralogous sequences, and difficulties in phasing alleles. Long read single molecule sequencers resolve these obstacles. Moreover, they offer higher consensus accuracies and can detect epigenetic modifications from native DNA. The first commercially available long read single molecule platform was the RS system based on PacBio’s single molecule real-time (SMRT) sequencing technology, which has since evolved into their RSII and Sequel systems. Here we capsulize how SMRT sequencing is revolutionizing constitutional, reproductive, cancer, microbial and viral genetic testing.© The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.


September 22, 2019  |  

Defining cell identity with single cell omics.

Cells are a fundamental unit of life, and the ability to study the phenotypes and behaviors of individual cells is crucial to understanding the workings of complex biological systems. Cell phenotypes (epigenomic, transcriptomic, proteomic, and metabolomic) exhibit dramatic heterogeneity between and within the different cell types and states underlying cellular functional diversity. Cell genotypes can also display heterogeneity throughout an organism, in the form of somatic genetic variation-most notably in the emergence and evolution of tumors. Recent technical advances in single-cell isolation and the development of omics approaches sensitive enough to reveal these aspects of cell identity have enabled a revolution in the study of multicellular systems. In this review, we discuss the technologies available to resolve the genomes, epigenomes, transcriptomes, proteomes, and metabolomes of single cells from a wide variety of living systems.© 2018 The Authors. Proteomics Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


September 22, 2019  |  

Somatic mosaicism of an intragenic FANCB duplication in both fibroblast and peripheral blood cells observed in a Fanconi anemia patient leads to milder phenotype.

Fanconi anemia (FA) is a rare disorder characterized by congenital malformations, progressive bone marrow failure, and predisposition to cancer. Patients harboring X-linked FANCB pathogenic variants usually present with severe congenital malformations resembling VACTERL syndrome with hydrocephalus.We employed the diepoxybutane (DEB) test for FA diagnosis, arrayCGH for detection of duplication, targeted capture and next-gen sequencing for defining the duplication breakpoint, PacBio sequencing of full-length FANCB aberrant transcript, FANCD2 ubiquitination and foci formation assays for the evaluation of FANCB protein function by viral transduction of FANCB-null cells with lentiviral FANCB WT and mutant expression constructs, and droplet digital PCR for quantitation of the duplication in the genomic DNA and cDNA.We describe here an FA-B patient with a mild phenotype. The DEB diagnostic test for FA revealed somatic mosaicism. We identified a 9154 bp intragenic duplication in FANCB, covering the first coding exon 3 and the flanking regions. A four bp homology (GTAG) present at both ends of the breakpoint is consistent with microhomology-mediated duplication mechanism. The duplicated allele gives rise to an aberrant transcript containing exon 3 duplication, predicted to introduce a stop codon in FANCB protein (p.A319*). Duplication levels in the peripheral blood DNA declined from 93% to 7.9% in the span of eleven years. Moreover, the patient fibroblasts have shown 8% of wild-type (WT) allele and his carrier mother showed higher than expected levels of WT allele (79% vs. 50%) in peripheral blood, suggesting that the duplication was highly unstable.Unlike sequence point variants, intragenic duplications are difficult to precisely define, accurately quantify, and may be very unstable, challenging the proper diagnosis. The reversion of genomic duplication to the WT allele results in somatic mosaicism and may explain the relatively milder phenotype displayed by the FA-B patient described here.© 2017 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.


September 22, 2019  |  

Somatic APP gene recombination in Alzheimer’s disease and normal neurons.

The diversity and complexity of the human brain are widely assumed to be encoded within a constant genome. Somatic gene recombination, which changes germline DNA sequences to increase molecular diversity, could theoretically alter this code but has not been documented in the brain, to our knowledge. Here we describe recombination of the Alzheimer’s disease-related gene APP, which encodes amyloid precursor protein, in human neurons, occurring mosaically as thousands of variant ‘genomic cDNAs’ (gencDNAs). gencDNAs lacked introns and ranged from full-length cDNA copies of expressed, brain-specific RNA splice variants to myriad smaller forms that contained intra-exonic junctions, insertions, deletions, and/or single nucleotide variations. DNA in situ hybridization identified gencDNAs within single neurons that were distinct from wild-type loci and absent from non-neuronal cells. Mechanistic studies supported neuronal ‘retro-insertion’ of RNA to produce gencDNAs; this process involved transcription, DNA breaks, reverse transcriptase activity, and age. Neurons from individuals with sporadic Alzheimer’s disease showed increased gencDNA diversity, including eleven mutations known to be associated with familial Alzheimer’s disease that were absent from healthy neurons. Neuronal gene recombination may allow ‘recording’ of neural activity for selective ‘playback’ of preferred gene variants whose expression bypasses splicing; this has implications for cellular diversity, learning and memory, plasticity, and diseases of the human brain.


September 22, 2019  |  

Single-cell multiomics: multiple measurements from single cells.

Single-cell sequencing provides information that is not confounded by genotypic or phenotypic heterogeneity of bulk samples. Sequencing of one molecular type (RNA, methylated DNA or open chromatin) in a single cell, furthermore, provides insights into the cell’s phenotype and links to its genotype. Nevertheless, only by taking measurements of these phenotypes and genotypes from the same single cells can such inferences be made unambiguously. In this review, we survey the first experimental approaches that assay, in parallel, multiple molecular types from the same single cell, before considering the challenges and opportunities afforded by these and future technologies. Copyright © 2016. Published by Elsevier Ltd.


September 22, 2019  |  

Long reads: their purpose and place.

In recent years long-read technologies have moved from being a niche and specialist field to a point of relative maturity likely to feature frequently in the genomic landscape. Analogous to next generation sequencing, the cost of sequencing using long-read technologies has materially dropped whilst the instrument throughput continues to increase. Together these changes present the prospect of sequencing large numbers of individuals with the aim of fully characterizing genomes at high resolution. In this article, we will endeavour to present an introduction to long-read technologies showing: what long reads are; how they are distinct from short reads; why long reads are useful and how they are being used. We will highlight the recent developments in this field, and the applications and potential of these technologies in medical research, and clinical diagnostics and therapeutics.


September 22, 2019  |  

Nuclear and mitochondrial genomes of the hybrid fungal plant pathogen Verticillium longisporum display a mosaic structure

Allopolyploidization, genome duplication through interspecific hybridization, is an important evolutionary mechanism that can enable organisms to adapt to environmental changes or stresses. This increased adaptive potential of allopolyploids can be particularly relevant for plant pathogens in their quest for host immune response evasion. Allodiploidization likely caused the shift in host range of the fungal pathogen plant Verticillium longisporum, as V. longisporum mainly infects Brassicaceae plants in contrast to haploid Verticillium spp. In this study, we investigated the allodiploid genome structure of V. longisporum and its evolution in the hybridization aftermath. The nuclear genome of V. longisporum displays a mosaic structure, as numerous contigs consists of sections of both parental origins. V. longisporum encountered extensive genome rearrangements, whereas the contribution of gene conversion is negligible. Thus, the mosaic genome structure mainly resulted from genomic rearrangements between parental chromosome sets. Furthermore, a mosaic structure was also found in the mitochondrial genome, demonstrating its bi-parental inheritance. In conclusion, the nuclear and mitochondrial genomes of V. longisporum parents interacted dynamically in the hybridization aftermath. Conceivably, novel combinations of DNA sequence of different parental origin facilitated genome stability after hybridization and consecutive niche adaptation of V. longisporum.


September 22, 2019  |  

Genome evolution across 1,011 Saccharomyces cerevisiae isolates.

Large-scale population genomic surveys are essential to explore the phenotypic diversity of natural populations. Here we report the whole-genome sequencing and phenotyping of 1,011 Saccharomyces cerevisiae isolates, which together provide an accurate evolutionary picture of the genomic variants that shape the species-wide phenotypic landscape of this yeast. Genomic analyses support a single ‘out-of-China’ origin for this species, followed by several independent domestication events. Although domesticated isolates exhibit high variation in ploidy, aneuploidy and genome content, genome evolution in wild isolates is mainly driven by the accumulation of single nucleotide polymorphisms. A common feature is the extensive loss of heterozygosity, which represents an essential source of inter-individual variation in this mainly asexual species. Most of the single nucleotide polymorphisms, including experimentally identified functional polymorphisms, are present at very low frequencies. The largest numbers of variants identified by genome-wide association are copy-number changes, which have a greater phenotypic effect than do single nucleotide polymorphisms. This resource will guide future population genomics and genotype-phenotype studies in this classic model system.


September 22, 2019  |  

Whole genome sequence of an edible and potential medicinal fungus, Cordyceps guangdongensis.

Cordyceps guangdongensis is an edible fungus which was approved as a novel food by the Chinese Ministry of Public Health in 2013. It also has a broad prospect of application in pharmaceutical industries, with many medicinal activities. In this study, the whole genome of C. guangdongensis GD15, a single spore isolate from a wild strain, was sequenced and assembled with Illumina and PacBio sequencing technology. The generated genome is 29.05 Mb in size, comprising nine scaffolds with an average GC content of 57.01%. It is predicted to contain a total of 9150 protein-coding genes. Sequence identification and comparative analysis indicated that the assembled scaffolds contained two complete chromosomes and four single-end chromosomes, showing a high level assembly. Gene annotation revealed a diversity of transposons that could contribute to the genome size and evolution. Besides, approximately 15.57% and 12.01% genes involved in metabolic processes were annotated by KEGG and COG respectively. Genes belonging to CAZymes accounted for 3.15% of the total genes. In addition, 435 transcription factors, involved in various biological processes, were identified. Among the identified transcription factors, the fungal transcription regulatory proteins (18.39%) and fungal-specific transcription factors (19.77%) represented the two largest classes of transcription factors. This genomic resource provided a new insight into better understanding the relevance of phenotypic characters and genetic mechanisms in C. guangdongensis. Copyright © 2018 Zhang et al.


September 22, 2019  |  

Homogenization of sub-genome secretome gene expression patterns in the allodiploid fungus Verticillium longisporum

Allopolyploidization, genome duplication through interspecific hybridization, is an important evolutionary mechanism that can enable organisms to adapt to environmental changes or stresses. The increased adaptive potential of allopolyploids can be particularly relevant for plant pathogens in their ongoing quest for host immune response evasion. To this end, plant pathogens secrete a plethora of molecules that enable host colonization. Allodiploidization has resulted in the new plant pathogen Verticillium longisporum that infects different hosts than haploid Verticillium species. To reveal the impact of allodiploidization on plant pathogen evolution, we studied the genome and transcriptome dynamics of V. longisporum using next-generation sequencing. V. longisporum genome evolution is characterized by extensive chromosomal rearrangements, between as well as within parental chromosome sets, leading to a mosaic genome structure. In comparison to haploid Verticillium species, V. longisporum genes display stronger signs of positive selection. The expression patterns of the two sub-genomes show remarkable resemblance, suggesting that the parental gene expression patterns homogenized upon hybridization. Moreover, whereas V. longisporum genes encoding secreted proteins frequently display differential expression between the parental sub-genomes in culture medium, expression patterns homogenize upon plant colonization. Collectively, our results illustrate of the adaptive potential of allodiploidy mediated by the interplay of two sub-genomes. Author summary Hybridization followed by whole-genome duplication, so-called allopolyploidization, provides genomic flexibility that is beneficial for survival under stressful conditions or invasiveness into new habitats. Allopolyploidization has mainly been studied in plants, but also occurs in other organisms, including fungi. Verticillium longisporum, an emerging fungal pathogen on brassicaceous plants, arose by allodiploidization between two Verticillium spp. We used comparative genomics to reveal the plastic nature of the V. longisporum genomes, showing that parental chromosome sets recombined extensively, resulting in a mosaic genome pattern. Furthermore, we show that non-synonymous substitutions frequently occurred in V. longisporum. Moreover, we reveal that expression patterns of genes encoding secreted proteins homogenized between the V. longisporum sub-genomes upon plant colonization. In conclusion, our results illustrate the large adaptive potential upon genome hybridization for fungi mediated by genomic plasticity and interaction between sub-genomes.


September 22, 2019  |  

A rapid method for directed gene knockout for screening in G0 zebrafish.

Zebrafish is a powerful model for forward genetics. Reverse genetic approaches are limited by the time required to generate stable mutant lines. We describe a system for gene knockout that consistently produces null phenotypes in G0 zebrafish. Yolk injection of sets of four CRISPR/Cas9 ribonucleoprotein complexes redundantly targeting a single gene recapitulated germline-transmitted knockout phenotypes in >90% of G0 embryos for each of 8 test genes. Early embryonic (6 hpf) and stable adult phenotypes were produced. Simultaneous multi-gene knockout was feasible but associated with toxicity in some cases. To facilitate use, we generated a lookup table of four-guide sets for 21,386 zebrafish genes and validated several. Using this resource, we targeted 50 cardiomyocyte transcriptional regulators and uncovered a role of zbtb16a in cardiac development. This system provides a platform for rapid screening of genes of interest in development, physiology, and disease models in zebrafish. Copyright © 2018 Elsevier Inc. All rights reserved.


September 22, 2019  |  

B chromosomes of the Asian seabass (Lates calcarifer) contribute to genome variations at the level of individuals and populations.

The Asian seabass (Lates calcarifer) is a bony fish from the Latidae family, which is widely distributed in the tropical Indo-West Pacific region. The karyotype of the Asian seabass contains 24 pairs of A chromosomes and a variable number of AT- and GC-rich B chromosomes (Bchrs or Bs). Dot-like shaped and nucleolus-associated AT-rich Bs were microdissected and sequenced earlier. Here we analyzed DNA fragments from Bs to determine their repeat and gene contents using the Asian seabass genome as a reference. Fragments of 75 genes, including an 18S rRNA gene, were found in the Bs; repeats represented 2% of the Bchr assembly. The 18S rDNA of the standard genome and Bs were similar and enriched with fragments of transposable elements. A higher nuclei DNA content in the male gonad and somatic tissue, compared to the female gonad, was demonstrated by flow cytometry. This variation in DNA content could be associated with the intra-individual variation in the number of Bs. A comparison between the copy number variation among the B-related fragments from whole genome resequencing data of Asian seabass individuals identified similar profiles between those from the South-East Asian/Philippines and Indian region but not the Australian ones. Our results suggest that Bs might cause variations in the genome among the individuals and populations of Asian seabass. A personalized copy number approach for segmental duplication detection offers a suitable tool for population-level analysis across specimens with low coverage genome sequencing.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.