Menu
April 21, 2020  |  

Complete genome sequence of Pseudoalteromonas sp. MEBiC 03485, isolated from deep-sea sediment

Pseudoalteromonas strains are widely distributed in the marine environment and most have attracted considerable interest owing to their ability to synthesize biologically active metabolites. In this study, we report and describe the genome sequence of Pseudoalteromonas sp. MEBiC 03485, isolated from the deep-sea sediment of Pacific Ocean at a depth of 2000?m. The complete genome consisted of three contigs with a total genome size of 4,167,407?bp and a GC content of 40.76?l%, and was predicted to contain 4194 protein-coding genes and 131 non-coding RNA genes. The strain MEBiC 03485 genome was also shown to contain genes for diverse metabolic pathways. Genome analysis revealed that the genome of strain MEBiC 03485 was enriched with genes involved in signal transduction, mobile elements, and cold-adaptation, some of which might improve ecological fitness in the deep-sea environment. These findings improve our understanding of microbial adaptation strategies in deep-sea environments.


April 21, 2020  |  

Genomic characterization of Nocardia seriolae strains isolated from diseased fish.

Members of the genus Nocardia are widespread in diverse environments; a wide range of Nocardia species are known to cause nocardiosis in several animals, including cat, dog, fish, and humans. Of the pathogenic Nocardia species, N. seriolae is known to cause disease in cultured fish, resulting in major economic loss. We isolated two N. seriolae strains, CK-14008 and EM15050, from diseased fish and sequenced their genomes using the PacBio sequencing platform. To identify their genomic features, we compared their genomes with those of other Nocardia species. Phylogenetic analysis showed that N. seriolae shares a common ancestor with a putative human pathogenic Nocardia species. Moreover, N. seriolae strains were phylogenetically divided into four clusters according to host fish families. Through genome comparison, we observed that the putative pathogenic Nocardia strains had additional genes for iron acquisition. Dozens of antibiotic resistance genes were detected in the genomes of N. seriolae strains; most of the antibiotics were involved in the inhibition of the biosynthesis of proteins or cell walls. Our results demonstrated the virulence features and antibiotic resistance of fish pathogenic N. seriolae strains at the genomic level. These results may be useful to develop strategies for the prevention of fish nocardiosis. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.