April 21, 2020  |  

Genome-Wide Association Study of Growth and Body-Shape-Related Traits in Large Yellow Croaker (Larimichthys crocea) Using ddRAD Sequencing.

Large yellow croaker (Larimichthys crocea) is an economically important marine fish species of China. Due to overfishing and marine pollution, the wild stocks of this croaker have collapsed in the past decades. Meanwhile, the cultured croaker is facing the difficulties of reduced genetic diversity and low growth rate. To explore the molecular markers related to the growth traits of croaker and providing the related SNPs for the marker-assisted selection, we used double-digest restriction-site associated DNA (ddRAD) sequencing to dissect the genetic bases of growth traits in a cultured population and identify the SNPs that associated with important growth traits by GWAS. A total of 220 individuals were genotyped by ddRAD sequencing. After quality control, 27,227 SNPs were identified in 220 samples and used for GWAS analysis. We identified 13 genome-wide significant associated SNPs of growth traits on 8 chromosomes, and the beta P of these SNPs ranged from 0.01 to 0.86. Through the definition of candidate regions and gene annotation, candidate genes related to growth were identified, including important regulators such as fgf18, fgf1, nr3c1, cyp8b1, fabp2, cyp2r1, ppara, and ccm2l. We also identified SNPs and candidate genes that significantly associated with body shape, including bmp7, col1a1, col11a2, and col18a1, which are also economically important traits for large yellow croaker aquaculture. The results provided insights into the genetic basis of growth and body shape in large yellow croaker population and would provide reliable genetic markers for molecular marker-assisted selection in the future. Meanwhile, the result established a basis for our subsequent fine mapping and related gene study.


April 21, 2020  |  

Complete chloroplast genome sequences of Kaempferia galanga and Kaempferia elegans: Molecular structures and comparative analysis.

Kaempferia galanga and Kaempferia elegans, which belong to the genus Kaempferia family Zingiberaceae, are used as valuable herbal medicine and ornamental plants, respectively. The chloroplast genomes have been used for molecular markers, species identification and phylogenetic studies. In this study, the complete chloroplast genome sequences of K. galanga and K. elegans are reported. Results show that the complete chloroplast genome of K. galanga is 163,811 bp long, having a quadripartite structure with large single copy (LSC) of 88,405 bp and a small single copy (SSC) of 15,812 bp separated by inverted repeats (IRs) of 29,797 bp. Similarly, the complete chloroplast genome of K. elegans is 163,555 bp long, having a quadripartite structure in which IRs of 29,773 bp length separates 88,020 bp of LSC and 15,989 bp of SSC. A total of 111 genes in K. galanga and 113 genes in K. elegans comprised 79 protein-coding genes and 4 ribosomal RNA (rRNA) genes, as well as 28 and 30 transfer RNA (tRNA) genes in K. galanga and K. elegans, respectively. The gene order, GC content and orientation of the two Kaempferia chloroplast genomes exhibited high similarity. The location and distribution of simple sequence repeats (SSRs) and long repeat sequences were determined. Eight highly variable regions between the two Kaempferia species were identified and 643 mutation events, including 536 single-nucleotide polymorphisms (SNPs) and 107 insertion/deletions (indels), were accurately located. Sequence divergences of the whole chloroplast genomes were calculated among related Zingiberaceae species. The phylogenetic analysis based on SNPs among eleven species strongly supported that K. galanga and K. elegans formed a cluster within Zingiberaceae. This study identified the unique characteristics of the entire K. galanga and K. elegans chloroplast genomes that contribute to our understanding of the chloroplast DNA evolution within Zingiberaceae species. It provides valuable information for phylogenetic analysis and species identification within genus Kaempferia.


April 21, 2020  |  

High Quality Draft Genome of Arogyapacha (Trichopus zeylanicus), an Important Medicinal Plant Endemic to Western Ghats of India.

Arogyapacha, the local name of Trichopus zeylanicus, is a rare, indigenous medicinal plant of India. This plant is famous for its traditional use as an instant energy stimulant. So far, no genomic resource is available for this important plant and hence its metabolic pathways are poorly understood. Here, we report on a high-quality draft assembly of approximately 713.4 Mb genome of T. zeylanicus, first draft genome from the genus Trichopus The assembly was generated in a hybrid approach using Illumina short-reads and Pacbio longer-reads. The total assembly comprised of 22601 scaffolds with an N50 value of 433.3 Kb. We predicted 34452 protein coding genes in T. zeylanicus genome and found that a significant portion of these predicted genes were associated with various secondary metabolite biosynthetic pathways. Comparative genome analysis revealed extensive gene collinearity between T. zeylanicus and its closely related plant species. The present genome and annotation data provide an essential resource to speed-up the research on secondary metabolism, breeding and molecular evolution of T. zeylanicus. Copyright © 2019 Chellappan et al.


April 21, 2020  |  

Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense.

Allotetraploid cotton species (Gossypium hirsutum and Gossypium barbadense) have long been cultivated worldwide for natural renewable textile fibers. The draft genome sequences of both species are available but they are highly fragmented and incomplete1-4. Here we report reference-grade genome assemblies and annotations for G. hirsutum accession Texas Marker-1 (TM-1) and G. barbadense accession 3-79 by integrating single-molecule real-time sequencing, BioNano optical mapping and high-throughput chromosome conformation capture techniques. Compared with previous assembled draft genomes1,3, these genome sequences show considerable improvements in contiguity and completeness for regions with high content of repeats such as centromeres. Comparative genomics analyses identify extensive structural variations that probably occurred after polyploidization, highlighted by large paracentric/pericentric inversions in 14 chromosomes. We constructed an introgression line population to introduce favorable chromosome segments from G. barbadense to G. hirsutum, allowing us to identify 13 quantitative trait loci associated with superior fiber quality. These resources will accelerate evolutionary and functional genomic studies in cotton and inform future breeding programs for fiber improvement.


April 21, 2020  |  

Development of a Molecular Marker Linked to the A4 Locus and the Structure of HD Genes in Pleurotus eryngii

Allelic differences in A and B mating-type loci are a prerequisite for the progression of mating in the genus Pleurotus eryngii; thus, the crossing is hampered by this biological barrier in inbreeding. Molecular markers linked to mating types of P. eryngii KNR2312 were investigated with randomly amplified polymorphic DNA to enhance crossing efficiency. An A4-linked sequence was identified and used to find the adjacent genomic region with the entire motif of the A locus from a contig sequenced by PacBio. The sequence-characterized amplified region marker 7-2299 distinguished A4 mating-type monokaryons from KNR2312 and other strains. A BLAST search of flanked sequences revealed that the A4 locus had a general feature consisting of the putative HD1 and HD2 genes. Both putative HD transcription factors contain a homeodomain sequence and a nuclear localization sequence; however, valid dimerization motifs were found only in the HD1 protein. The ACAAT motif, which was reported to have relevance to sex determination, was found in the intergenic region. The SCAR marker could be applicable in the classification of mating types in the P. eryngii breeding program, and the A4 locus could be the basis for a multi-allele detection marker.


April 21, 2020  |  

Characterization of vanM carrying clinical Enterococcus isolates and diversity of the suppressed vanM gene cluster.

Here we report the prevalence of the suppressed vanM gene cluster as a reservoir of vancomycin resistance genes. Among 1284 clinical isolates of enterococci from four hospitals in Hangzhou, China, 55 isolates of Enterococcus faecium and one isolate of Enterococcus faecalis were screened positive for the vanM genotype. Antimicrobial susceptibility testing showed that 55 of the 56 vanM-positive isolates were susceptible to vancomycin and teicoplanin. Most of them (54/56) belonged to the main epidemic lineage CC17, mostly the ST78 type. The vanM gene clusters in the 55 vancomycin-susceptible isolates showed sequence diversity owing to different insertion locations of IS1216E. The vanM transposons could be classified into five types and they all carried two or more IS1216E elements, leading to complete or partial deletions of vanR, vanS, or vanX. Quantitative reverse transcription polymerase chain reaction showed that the expression level of vanM was significantly lower in the vancomycin-susceptible isolates than in the vancomycin-resistant isolate. Considering the prevalence of the vanM genotype and the potential for conversion to a resistant phenotype, vanM might act as an important determinant of glycopeptide resistance in the future. It is essential to strengthen the surveillance of vanM-containing enterococci to control the dissemination of vancomycin resistance. Copyright © 2018. Published by Elsevier B.V.


April 21, 2020  |  

Chromosome-level genome assembly of Triplophysa tibetana, a fish adapted to the harsh high-altitude environment of the Tibetan Plateau.

Triplophysa is an endemic fish genus of the Tibetan Plateau in China. Triplophysa tibetana, which lives at a recorded altitude of ~4,000 m and plays an important role in the highland aquatic ecosystem, serves as an excellent model for investigating high-altitude environmental adaptation. However, evolutionary and conservation studies of T. tibetana have been limited by scarce genomic resources for the genus Triplophysa. In the present study, we applied PacBio sequencing and the Hi-C technique to assemble the T. tibetana genome. A 652-Mb genome with 1,325 contigs with an N50 length of 3.1 Mb was obtained. The 1,137 contigs were further assembled into 25 chromosomes, representing 98.7% and 80.47% of all contigs at the base and sequence number level, respectively. Approximately 260 Mb of sequence, accounting for ~39.8% of the genome, was identified as repetitive elements. DNA transposons (16.3%), long interspersed nuclear elements (12.4%) and long terminal repeats (11.0%) were the most repetitive types. In total, 24,372 protein-coding genes were predicted in the genome, and ~95% of the genes were functionally annotated via a search in public databases. Using whole genome sequence information, we found that T. tibetana diverged from its common ancestor with Danio rerio ~121.4 million years ago. The high-quality genome assembled in this work not only provides a valuable genomic resource for future population and conservation studies of T. tibetana, but it also lays a solid foundation for further investigation into the mechanisms of environmental adaptation of endemic fishes in the Tibetan Plateau. © 2019 John Wiley & Sons Ltd.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.