Menu
September 22, 2019  |  

Comparative mapping of the ASTRINGENCY locus controlling fruit astringency in hexaploid persimmon (Diospyros kaki Thunb.) with the diploid D. lotus reference genome

Persimmon (Diospyros kaki) is a tree crop species that originated in East Asia, consists mainly of hexaploid individuals (2n = 6x = 90) with some nonaploid individuals. One of the unique characteristics of persimmon is the continuous accumulation of proanthocyanidins (PAs) in its fruit until the middle of fruit development, resulting in a strong astringent taste even at commercial fruit maturity. Among persimmon cultivars, pollination-constant and non-astringent (PCNA) types cease PA accumulation in early fruit development and become non-astringent at commercial maturity. PCNA is an allelic trait to non-PCNA and is controlled by a single locus called the ASTRINGENCY (AST) locus. Previous segregation analyses indicated that the AST locus shows hexasomic inheritance; a recessive allele, ast, at this locus confers PCNA. Here, we report a shuttle mapping approach to delimit the AST locus region in the hexaploid persimmon genome by using D. lotus, a diploid relative of D. kaki, as a reference. A D. lotus F1 population of 333 individuals and 296 D. kaki siblings segregating for the PCNA trait were used to map the AST region using haplotype-specific markers covering the AST region. This indicated that the AST locus is syntenic to an approximately 915-kb region of the D. lotus genome. In this 915-kb region, we found several candidates for AST that were revealed from the fruit transcriptome of a population segregating for the PCNA trait. These results could provide important clues for the isolation of AST in hexaploid persimmon.


September 22, 2019  |  

LTR_retriever: A highly accurate and sensitive program for identification of long terminal repeat retrotransposons.

Long terminal repeat retrotransposons (LTR-RTs) are prevalent in plant genomes. The identification of LTR-RTs is critical for achieving high-quality gene annotation. Based on the well-conserved structure, multiple programs were developed for the de novo identification of LTR-RTs; however, these programs are associated with low specificity and high false discovery rates. Here, we report LTR_retriever, a multithreading-empowered Perl program that identifies LTR-RTs and generates high-quality LTR libraries from genomic sequences. LTR_retriever demonstrated significant improvements by achieving high levels of sensitivity (91%), specificity (97%), accuracy (96%), and precision (90%) in rice (Oryza sativa). LTR_retriever is also compatible with long sequencing reads. With 40k self-corrected PacBio reads equivalent to 4.5× genome coverage in Arabidopsis (Arabidopsis thaliana), the constructed LTR library showed excellent sensitivity and specificity. In addition to canonical LTR-RTs with 5′-TG…CA-3′ termini, LTR_retriever also identifies noncanonical LTR-RTs (non-TGCA), which have been largely ignored in genome-wide studies. We identified seven types of noncanonical LTRs from 42 out of 50 plant genomes. The majority of noncanonical LTRs areCopiaelements, with which the LTR is four times shorter than that of otherCopiaelements, which may be a result of their target specificity. Strikingly, non-TGCACopiaelements are often located in genic regions and preferentially insert nearby or within genes, indicating their impact on the evolution of genes and their potential as mutagenesis tools.© 2018 American Society of Plant Biologists. All Rights Reserved.


September 22, 2019  |  

Induced salt tolerance of perennial ryegrass by a novel bacterium strain from the rhizosphere of a desert shrub Haloxylon ammodendron.

Drought and soil salinity reduce agricultural output worldwide. Plant-growth-promoting rhizobacteria (PGPR) can enhance plant growth and augment plant tolerance to biotic and abiotic stresses.Haloxylon ammodendron, a C4 perennial succulent xerohalophyte shrub with excellent drought and salt tolerance, is naturally distributed in the desert area of northwest China. In our previous work, a bacterium strain numbered as M30-35 was isolated from the rhizosphere ofH. ammodendronin Tengger desert, Gansu province, northwest China. In current work, the effects of M30-35 inoculation on salt tolerance of perennial ryegrass were evaluated and its genome was sequenced to identify genes associated with plant growth promotion. Results showed that M30-35 significantly enhanced growth and salt tolerance of perennial ryegrass by increasing shoot fresh and dry weights, chlorophyll content, root volume, root activity, leaf catalase activity, soluble sugar and proline contents that contributed to reduced osmotic potential, tissue K? content and K?/Na? ratio, while decreasing malondialdehyde (MDA) content and relative electric conductivity (REC), especially under higher salinity. The genome of M30-35 contains 4421 protein encoding genes, 12 rRNA, 63 tRNA-encoding genes and four rRNA operons. M30-35 was initially classified as a new species inPseudomonasand named asPseudomonassp. M30-35. Thirty-four genes showing homology to genes associated with PGPR traits and abiotic stress tolerance were identified inPseudomonassp. M30-35 genome, including 12 related to insoluble phosphorus solubilization, four to auxin biosynthesis, four to other process of growth promotion, seven to oxidative stress alleviation, four to salt and drought tolerance and three to cold and heat tolerance. Further study is needed to clarify the correlation between these genes from M30-35 and the salt stress alleviation of inoculated plants under salt stress. Overall, our research indicated that desert shrubs appear rich in PGPRs that can help important crops tolerate abiotic stress.


September 22, 2019  |  

Assembly and analysis of a qingke reference genome demonstrate its close genetic relation to modern cultivated barley.

Qingke, the local name of hulless barley in the Tibetan Plateau, is a staple food for Tibetans. The availability of its reference genome sequences could be useful for studies on breeding and molecular evolution. Taking advantage of the third-generation sequencer (PacBio), we de novo assembled a 4.84-Gb genome sequence of qingke, cv. Zangqing320 and anchored a 4.59-Gb sequence to seven chromosomes. Of the 46,787 annotated ‘high-confidence’ genes, 31 564 were validated by RNA-sequencing data of 39 wild and cultivated barley genotypes with wide genetic diversity, and the results were also confirmed by nonredundant protein database from NCBI. As some gaps in the reference genome of Morex were covered in the reference genome of Zangqing320 by PacBio reads, we believe that the Zangqing320 genome provides the useful supplements for the Morex genome. Using the qingke genome as a reference, we conducted a genome comparison, revealing a close genetic relationship between a hulled barley (cv. Morex) and a hulless barley (cv. Zangqing320), which is strongly supported by the low-diversity regions in the two genomes. Considering the origin of Morex from its breeding pedigree, we then demonstrated a close genomic relationship between modern cultivated barley and qingke. Given this genomic relationship and the large genetic diversity between qingke and modern cultivated barley, we propose that qingke could provide elite genes for barley improvement.© 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.


September 22, 2019  |  

The hardy rubber tree genome provides insights into the evolution of polyisoprene biosynthesis.

Eucommia ulmoides, also called hardy rubber tree, is an economically important tree; however, the lack of its genome sequence restricts the fundamental biological research and applied studies of this plant species. Here, we present a high-quality assembly of its ~1.2-Gb genome (scaffold N50 = 1.88 Mb) with at least 26 723 predicted genes for E. ulmoides, the first sequenced genome of the order Garryales, which was obtained using an integrated strategy combining Illumina sequencing, PacBio sequencing, and BioNano mapping. As a sister taxon to lamiids and campanulids, E. ulmoides underwent an ancient genome triplication shared by core eudicots but no further whole-genome duplication in the last ~125 million years. E. ulmoides exhibits high expression levels and/or gene number expansion for multiple genes involved in stress responses and the biosynthesis of secondary metabolites, which may account for its considerable environmental adaptability. In contrast to the rubber tree (Hevea brasiliensis), which produces cis-polyisoprene, E. ulmoides has evolved to synthesize long-chain trans-polyisoprene via farnesyl diphosphate synthases (FPSs). Moreover, FPS and rubber elongation factor/small rubber particle protein gene families were expanded independently from the H. brasiliensis lineage. These results provide new insights into the biology of E. ulmoides and the origin of polyisoprene biosynthesis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.


September 22, 2019  |  

Gene presence-absence polymorphism in castrating anther-smut fungi: Recent gene Gains and Phylogeographic Structure.

Gene presence-absence polymorphisms segregating within species are a significant source of genetic variation but have been little investigated to date in natural populations. In plant pathogens, the gain or loss of genes encoding proteins interacting directly with the host, such as secreted proteins, probably plays an important role in coevolution and local adaptation. We investigated gene presence-absence polymorphism in populations of two closely related species of castrating anther-smut fungi, Microbotryum lychnidis-dioicae (MvSl) and M. silenes-dioicae (MvSd), from across Europe, on the basis of Illumina genome sequencing data and high-quality genome references. We observed presence-absence polymorphism for 186 autosomal genes (2% of all genes) in MvSl, and only 51 autosomal genes in MvSd. Distinct genes displayed presence-absence polymorphism in the two species. Genes displaying presence-absence polymorphism were frequently located in subtelomeric and centromeric regions and close to repetitive elements, and comparison with outgroups indicated that most were present in a single species, being recently acquired through duplications in multiple-gene families. Gene presence-absence polymorphism in MvSl showed a phylogeographic structure corresponding to clusters detected based on SNPs. In addition, gene absence alleles were rare within species and skewed toward low-frequency variants. These findings are consistent with a deleterious or neutral effect for most gene presence-absence polymorphism. Some of the observed gene loss and gain events may however be adaptive, as suggested by the putative functions of the corresponding encoded proteins (e.g., secreted proteins) or their localization within previously identified selective sweeps. The adaptive roles in plant and anther-smut fungi interactions of candidate genes however need to be experimentally tested in future studies.


September 22, 2019  |  

DNA N6-adenine methylation in Arabidopsis thaliana.

DNA methylation on N6-adenine (6mA) has recently been found to be a potentially epigenetic mark in several unicellular and multicellular eukaryotes. However, its distribution patterns and potential functions in land plants, which are primary producers for most ecosystems, remain largely unknown. Here we report global profiling of 6mA sites at single-nucleotide resolution in the genome of Arabidopsis thaliana at different developmental stages using single-molecule real-time sequencing. 6mA sites are widely distributed across the Arabidopsis genome and enriched over the pericentromeric heterochromatin regions. 6mA occurs more frequently in gene bodies than intergenic regions. Analysis of 6mA methylomes and RNA sequencing data demonstrates that 6mA frequency positively correlates with the gene expression level and the transition from vegetative to reproductive growth in Arabidopsis. Our results uncover 6mA as a DNA mark associated with actively expressed genes in Arabidopsis, suggesting that 6mA serves as a hitherto unknown epigenetic mark in land plants. Copyright © 2018 Elsevier Inc. All rights reserved.


September 22, 2019  |  

Genome-wide analysis of the NAC transcription factor family and their expression during the development and ripening of the Fragaria × ananassa fruits.

NAC proteins are a family of transcription factors which have a variety of important regulatory roles in plants. They present a very well conserved group of NAC subdomains in the N-terminal region and a highly variable domain at the C-terminus. Currently, knowledge concerning NAC family in the strawberry plant remains very limited. In this work, we analyzed the NAC family of Fragaria vesca, and a total of 112 NAC proteins were identified after we curated the annotations from the version 4.0.a1 genome. They were placed into the ligation groups (pseudo-chromosomes) and described its physicochemical and genetic features. A microarray transcriptomic analysis showed six of them expressed during the development and ripening of the Fragaria x ananassa fruit. Their expression patterns were studied in fruit (receptacle and achenes) in different stages of development and in vegetative tissues. Also, the expression level under different hormonal treatments (auxins, ABA) and drought stress was investigated. In addition, they were clustered with other NAC transcription factor with known function related to growth and development, senescence, fruit ripening, stress response, and secondary cell wall and vascular development. Our results indicate that these six strawberry NAC proteins could play different important regulatory roles in the process of development and ripening of the fruit, providing the basis for further functional studies and the selection for NAC candidates suitable for biotechnological applications.


September 22, 2019  |  

A transposable element annotation pipeline and expression analysis reveal potentially active elements in the microalga Tisochrysis lutea.

Transposable elements (TEs) are mobile DNA sequences known as drivers of genome evolution. Their impacts have been widely studied in animals, plants and insects, but little is known about them in microalgae. In a previous study, we compared the genetic polymorphisms between strains of the haptophyte microalga Tisochrysis lutea and suggested the involvement of active autonomous TEs in their genome evolution.To identify potentially autonomous TEs, we designed a pipeline named PiRATE (Pipeline to Retrieve and Annotate Transposable Elements, download: https://doi.org/10.17882/51795 ), and conducted an accurate TE annotation on a new genome assembly of T. lutea. PiRATE is composed of detection, classification and annotation steps. Its detection step combines multiple, existing analysis packages representing all major approaches for TE detection and its classification step was optimized for microalgal genomes. The efficiency of the detection and classification steps was evaluated with data on the model species Arabidopsis thaliana. PiRATE detected 81% of the TE families of A. thaliana and correctly classified 75% of them. We applied PiRATE to T. lutea genomic data and established that its genome contains 15.89% Class I and 4.95% Class II TEs. In these, 3.79 and 17.05% correspond to potentially autonomous and non-autonomous TEs, respectively. Annotation data was combined with transcriptomic and proteomic data to identify potentially active autonomous TEs. We identified 17 expressed TE families and, among these, a TIR/Mariner and a TIR/hAT family were able to synthesize their transposase. Both these TE families were among the three highest expressed genes in a previous transcriptomic study and are composed of highly similar copies throughout the genome of T. lutea. This sum of evidence reveals that both these TE families could be capable of transposing or triggering the transposition of potential related MITE elements.This manuscript provides an example of a de novo transposable element annotation of a non-model organism characterized by a fragmented genome assembly and belonging to a poorly studied phylum at genomic level. Integration of multi-omics data enabled the discovery of potential mobile TEs and opens the way for new discoveries on the role of these repeated elements in genomic evolution of microalgae.


September 22, 2019  |  

Nucleotide-binding resistance gene signatures in sugar beet, insights from a new reference genome.

Nucleotide-binding (NB-ARC), leucine-rich-repeat genes (NLRs) account for 60.8% of resistance (R) genes molecularly characterized from plants. NLRs exist as large gene families prone to tandem duplication and transposition, with high sequence diversity among crops and their wild relatives. This diversity can be a source of new disease resistance, but difficulty in distinguishing specific sequences from homologous gene family members hinders characterization of resistance for improving crop varieties. Current genome sequencing and assembly technologies, especially those using long-read sequencing, are improving resolution of repeat-rich genomic regions and clarifying locations of duplicated genes, such as NLRs. Using the conserved NB-ARC domain as a model, 231 tentative NB-ARC loci were identified in a highly contiguous genome assembly of sugar beet, revealing diverged and truncated NB-ARC signatures as well as full-length sequences. The NB-ARC-associated proteins contained NLR resistance gene domains, including TIR, CC, and LRR, as well as other integrated domains. Phylogenetic relationships of partial and complete domains were determined, and patterns of physical clustering in the genome were evaluated. Comparison of sugar beet NB-ARC domains to validated R genes from monocots and eudicots suggested extensive B. vulgaris-specific subfamily expansions. The NLR landscape in the rhizomania resistance conferring Rz region of Chromosome 3 was characterized, identifying 26 NLR-like sequences spanning 20 MB. This work presents the first detailed view of NLR family composition in a member of the Caryophyllales, builds a foundation for additional disease resistance work in B. vulgaris, and demonstrates an additional nucleic-acid-based method for NLR prediction in non-model plant species. This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.


September 22, 2019  |  

Enrichment of the antibiotic resistance gene tet(L) in an alkaline soil fertilized with plant derived organic manure.

Fifteen antibiotic resistance genes (ARGs) and intI1, a gene involved in horizontal gene transfer (HGT) of ARGs, were quantified in three different soil samples from a 22 year old field experiment that had received inorganic fertilizer (NPK), organic manure (OM; a mixture of wheat straw, soybean oil cake and cotton cake), and control fields that had received no fertilizer and manure (CK). Tet(L) was the most abundant ARG in OM, which also contained considerable levels of intI1. Molecular analysis of yearly collected archived soils over the past 22 years showed that tet(L) and intI1 were higher in OM soils than in NPK soils. The relative abundance of tet(L) was essentially constant during these years, while the level of intI1 in OM soils decreased over time. The main genotype of tet(L) was the same in archived and in fresh soil, OM, and irrigation water. Phylogenetic analysis of the 16S rRNA genes of tetracycline-resistant bacteria (TRB) isolates indicated that the Firmucutes carrying tet(L) in OM were similar to those in the OM soil, suggesting that OM transferred TRB into the OM soils where they survived. Almost all of the TRB isolated from OM carried tet(L) and belonged to the Firmicutes. Survival of bacteria from the organic manure that carried tet(L) may be the cause of the increased level of tet(L) in OM soil.


September 22, 2019  |  

Amplification and adaptation of centromeric repeats in polyploid switchgrass species.

Centromeres in most higher eukaryotes are composed of long arrays of satellite repeats from a single satellite repeat family. Why centromeres are dominated by a single satellite repeat and how the satellite repeats originate and evolve are among the most intriguing and long-standing questions in centromere biology. We identified eight satellite repeats in the centromeres of tetraploid switchgrass (Panicum virgatum). Seven repeats showed characteristics associated with classical centromeric repeats with monomeric lengths ranging from 166 to 187 bp. Interestingly, these repeats share an 80-bp DNA motif. We demonstrate that this 80-bp motif may dictate translational and rotational phasing of the centromeric repeats with the cenH3 nucleosomes. The sequence of the last centromeric repeat, Pv156, is identical to the 5S ribosomal RNA genes. We demonstrate that a 5S ribosomal RNA gene array was recruited to be the functional centromere for one of the switchgrass chromosomes. Our findings reveal that certain types of satellite repeats, which are associated with unique sequence features and are composed of monomers in mono-nucleosomal length, are favorable for centromeres. Centromeric repeats may undergo dynamic amplification and adaptation before the centromeres in the same species become dominated by the best adapted satellite repeat.© 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.


September 22, 2019  |  

Comparative genomics of Spiraeoideae-infecting Erwinia amylovora strains provides novel insight to genetic diversity and identifies the genetic basis of a low-virulence strain.

Erwinia amylovora is the causal agent of fire blight, one of the most devastating diseases of apple and pear. Erwinia amylovora is thought to have originated in North America and has now spread to at least 50 countries worldwide. An understanding of the diversity of the pathogen population and the transmission to different geographical regions is important for the future mitigation of this disease. In this research, we performed an expanded comparative genomic study of the Spiraeoideae-infecting (SI) E. amylovora population in North America and Europe. We discovered that, although still highly homogeneous, the genetic diversity of 30 E. amylovora genomes examined was about 30 times higher than previously determined. These isolates belong to four distinct clades, three of which display geographical clustering and one of which contains strains from various geographical locations (‘Widely Prevalent’ clade). Furthermore, we revealed that strains from the Widely Prevalent clade displayed a higher level of recombination with strains from a clade strictly from the eastern USA, which suggests that the Widely Prevalent clade probably originated from the eastern USA before it spread to other locations. Finally, we detected variations in virulence in the SI E. amylovora strains on immature pear, and identified the genetic basis of one of the low-virulence strains as being caused by a single nucleotide polymorphism in hfq, a gene encoding an important virulence regulator. Our results provide insights into the population structure, distribution and evolution of SI E. amylovora in North America and Europe.© 2017 BSPP AND JOHN WILEY & SONS LTD.


September 22, 2019  |  

A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits.

Rose is the world’s most important ornamental plant, with economic, cultural and symbolic value. Roses are cultivated worldwide and sold as garden roses, cut flowers and potted plants. Roses are outbred and can have various ploidy levels. Our objectives were to develop a high-quality reference genome sequence for the genus Rosa by sequencing a doubled haploid, combining long and short reads, and anchoring to a high-density genetic map, and to study the genome structure and genetic basis of major ornamental traits. We produced a doubled haploid rose line (‘HapOB’) from Rosa chinensis ‘Old Blush’ and generated a rose genome assembly anchored to seven pseudo-chromosomes (512?Mb with N50 of 3.4?Mb and 564 contigs). The length of 512?Mb represents 90.1-96.1% of the estimated haploid genome size of rose. Of the assembly, 95% is contained in only 196 contigs. The anchoring was validated using high-density diploid and tetraploid genetic maps. We delineated hallmark chromosomal features, including the pericentromeric regions, through annotation of transposable element families and positioned centromeric repeats using fluorescent in situ hybridization. The rose genome displays extensive synteny with the Fragaria vesca genome, and we delineated only two major rearrangements. Genetic diversity was analysed using resequencing data of seven diploid and one tetraploid Rosa species selected from various sections of the genus. Combining genetic and genomic approaches, we identified potential genetic regulators of key ornamental traits, including prickle density and the number of flower petals. A rose APETALA2/TOE homologue is proposed to be the major regulator of petal number in rose. This reference sequence is an important resource for studying polyploidization, meiosis and developmental processes, as we demonstrated for flower and prickle development. It will also accelerate breeding through the development of molecular markers linked to traits, the identification of the genes underlying them and the exploitation of synteny across Rosaceae.


September 22, 2019  |  

Protocol: a versatile, inexpensive, high-throughput plant genomic DNA extraction method suitable for genotyping-by-sequencing.

The recent development of next-generation sequencing DNA marker technologies, such as genotyping-by-sequencing (GBS), generates thousands of informative single nucleotide polymorphism markers in almost any species, regardless of genomic resources. This enables poorly resourced or “orphan” crops/species access to high-density, high-throughput marker platforms which have revolutionised population genetics studies and plant breeding. DNA quality underpins success of GBS methods as the DNA must be amenable to restriction enzyme digestion and sequencing. A barrier to implementing GBS technologies is access to inexpensive, high-throughput extraction methods that yield sequencing-quality genomic DNA (gDNA) from plants. Several high-throughput DNA extraction methods are available, but typically provide low yield or poor quality gDNA, or are costly (US$6-$9/sample) for consumables.We modified a non-organic solvent protocol to extract microgram quantities (1-13 µg) of sequencing-quality high molecular weight gDNA inexpensively in 96-well plates from either fresh, freeze-dried or silica gel-dried plant tissue. The protocol was effective for several easy and difficult-to-extract forage, crop, horticultural and common model species including Trifolium, Medicago, Lolium, Secale, Festuca, Malus, Oryza, and Arabidopsis. The extracted DNA was of high molecular weight and digested readily with restriction enzymes. Contrasting with other extraction protocols we assessed, Illumina-based sequencing of GBS libraries developed from this gDNA had very uniform high quality base-calls to the end of sequence reads. Furthermore, DNA extracted using this method has been sequenced successfully with the PacBio long-read platform. The protocol is scalable, readily automated without requirement for fume hoods, requires approximately three hours to process 192 samples (384-576 samples/day), and is inexpensive at US$0.62/sample for consumables.This versatile, scalable and simple protocol yields high molecular weight genomic DNA suitable for restriction enzyme digestion and next-generation sequencing applications including GBS and long-read sequencing platforms such as PacBio. The low cost, high-throughput, and extraction of high quality gDNA from a range of fresh and dried source plant material makes this method suitable for many sequencing and genotyping applications including large-scale sample screening underpinning breeding programmes.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.