Menu
September 22, 2019  |  

The genome of an underwater architect, the caddisfly Stenopsyche tienmushanensis Hwang (Insecta: Trichoptera).

Caddisflies (Insecta: Trichoptera) are a highly adapted freshwater group of insects split from a common ancestor with Lepidoptera. They are the most diverse (>16,000 species) of the strictly aquatic insect orders and are widely employed as bio-indicators in water quality assessment and monitoring. Among the numerous adaptations to aquatic habitats, caddisfly larvae use silk and materials from the environment (e.g., stones, sticks, leaf matter) to build composite structures such as fixed retreats and portable cases. Understanding how caddisflies have adapted to aquatic habitats will help explain the evolution and subsequent diversification of the group.We sequenced a retreat-builder caddisfly Stenopsyche tienmushanensis Hwang and assembled a high-quality genome from both Illumina and Pacific Biosciences (PacBio) sequencing. In total, 601.2 M Illumina reads (90.2 Gb) and 16.9 M PacBio subreads (89.0 Gb) were generated. The 451.5 Mb assembled genome has a contig N50 of 1.29 M, has a longest contig of 4.76 Mb, and covers 97.65% of the 1,658 insect single-copy genes as assessed by Benchmarking Universal Single-Copy Orthologs. The genome comprises 36.76% repetitive elements. A total of 14,672 predicted protein-coding genes were identified. The genome revealed gene expansions in specific groups of the cytochrome P450 family and olfactory binding proteins, suggesting potential genomic features associated with pollutant tolerance and mate finding. In addition, the complete gene complex of the highly repetitive H-fibroin, the major protein component of caddisfly larval silk, was assembled.We report the draft genome of Stenopsyche tienmushanensis, the highest-quality caddisfly genome so far. The genome information will be an important resource for the study of caddisflies and may shed light on the evolution of aquatic insects.


September 22, 2019  |  

Exploring the genome and transcriptome of the cave nectar bat Eonycteris spelaea with PacBio long-read sequencing.

In the past two decades, bats have emerged as an important model system to study host-pathogen interactions. More recently, it has been shown that bats may also serve as a new and excellent model to study aging, inflammation, and cancer, among other important biological processes. The cave nectar bat or lesser dawn bat (Eonycteris spelaea) is known to be a reservoir for several viruses and intracellular bacteria. It is widely distributed throughout the tropics and subtropics from India to Southeast Asia and pollinates several plant species, including the culturally and economically important durian in the region. Here, we report the whole-genome and transcriptome sequencing, followed by subsequent de novo assembly, of the E. spelaea genome solely using the Pacific Biosciences (PacBio) long-read sequencing platform.The newly assembled E. spelaea genome is 1.97 Gb in length and consists of 4,470 sequences with a contig N50 of 8.0 Mb. Identified repeat elements covered 34.65% of the genome, and 20,640 unique protein-coding genes with 39,526 transcripts were annotated.We demonstrated that the PacBio long-read sequencing platform alone is sufficient to generate a comprehensive de novo assembled genome and transcriptome of an important bat species. These results will provide useful insights and act as a resource to expand our understanding of bat evolution, ecology, physiology, immunology, viral infection, and transmission dynamics.


September 22, 2019  |  

Construction of Pará rubber tree genome and multi-transcriptome database accelerates rubber researches.

Natural rubber is an economically important material. Currently the Pará rubber tree, Hevea brasiliensis is the main commercial source. Little is known about rubber biosynthesis at the molecular level. Next-generation sequencing (NGS) technologies brought draft genomes of three rubber cultivars and a variety of RNA sequencing (RNA-seq) data. However, no current genome or transcriptome databases (DB) are organized by gene.A gene-oriented database is a valuable support for rubber research. Based on our original draft genome sequence of H. brasiliensis RRIM600, we constructed a rubber tree genome and transcriptome DB. Our DB provides genome information including gene functional annotations and multi-transcriptome data of RNA-seq, full-length cDNAs including PacBio Isoform sequencing (Iso-Seq), ESTs and genome wide transcription start sites (TSSs) derived from CAGE technology. Using our original and publically available RNA-seq data, we calculated co-expressed genes for identifying functionally related gene sets and/or genes regulated by the same transcription factor (TF). Users can access multi-transcriptome data through both a gene-oriented web page and a genome browser. For the gene searching system, we provide keyword search, sequence homology search and gene expression search; users can also select their expression threshold easily.The rubber genome and transcriptome DB provides rubber tree genome sequence and multi-transcriptomics data. This DB is useful for comprehensive understanding of the rubber transcriptome. This will assist both industrial and academic researchers for rubber and economically important close relatives such as R. communis, M. esculenta and J. curcas. The Rubber Transcriptome DB release 2017.03 is accessible at http://matsui-lab.riken.jp/rubber/ .


September 22, 2019  |  

Single-Molecule Long-Read Sequencing of Zanthoxylum bungeanum Maxim. Transcriptome: Identification of Aroma-Related Genes

Zanthoxylum bungeanum Maxim. is an economically important tree species that is resistant to drought and infertility, and has potential medicinal and edible value. However, comprehensive genomic data are not yet available for this species, limiting its potential utility for medicinal use, breeding programs, and cultivation. Transcriptome sequencing provides an effective approach to remedying this shortcoming. Herein, single-molecule long-read sequencing and next-generation sequencingapproacheswereusedinparalleltoobtaintranscriptisoformstructureandgenefunctional informationinZ.bungeanum. Intotal, 282,101readsofinserts(ROIs)wereidentified, including134,074 full-length non-chimeric reads, among which 65,711 open reading frames (ORFs), 50,135 simple sequence repeats (SSRs), and 1492 long non-coding RNAs (lncRNAs) were detected. Functional annotation revealed metabolic pathways related to aroma components and color characteristics in Z. bungeanum. Unexpectedly, 30 transcripts were annotated as genes involved in regulating the pathogenesis of breast and colorectal cancers. This work provides a comprehensive transcriptome resource for Z. bungeanum, and lays a foundation for the further investigation and utilization of Zanthoxylum resources.


September 22, 2019  |  

MHC class I diversity of olive baboons (Papio anubis) unravelled by next-generation sequencing.

The olive baboon represents an important model system to study various aspects of human biology and health, including the origin and diversity of the major histocompatibility complex. After screening of a group of related animals for polymorphisms associated with a well-defined microsatellite marker, subsequent MHC class I typing of a selected population of 24 animals was performed on two distinct next-generation sequencing (NGS) platforms. A substantial number of 21 A and 80 B transcripts were discovered, about half of which had not been previously reported. Per animal, from one to four highly transcribed A alleles (majors) were observed, in addition to ones characterised by low transcripion levels (minors), such as members of the A*14 lineage. Furthermore, in one animal, up to 13 B alleles with differential transcription level profiles may be present. Based on segregation profiles, 16 Paan-AB haplotypes were defined. A haplotype encodes in general one or two major A and three to seven B transcripts, respectively. A further peculiarity is the presence of at least one copy of a B*02 lineage on nearly every haplotype, which indicates that B*02 represents a separate locus with probably a specialistic function. Haplotypes appear to be generated by recombination-like events, and the breakpoints map not only between the A and B regions but also within the B region itself. Therefore, the genetic makeup of the olive baboon MHC class I region appears to have been subject to a similar or even more complex expansion process than the one documented for macaque species.


September 22, 2019  |  

High-resolution comparative analysis of great ape genomes.

Genetic studies of human evolution require high-quality contiguous ape genome assemblies that are not guided by the human reference. We coupled long-read sequence assembly and full-length complementary DNA sequencing with a multiplatform scaffolding approach to produce ab initio chimpanzee and orangutan genome assemblies. By comparing these with two long-read de novo human genome assemblies and a gorilla genome assembly, we characterized lineage-specific and shared great ape genetic variation ranging from single- to mega-base pair-sized variants. We identified ~17,000 fixed human-specific structural variants identifying genic and putative regulatory changes that have emerged in humans since divergence from nonhuman apes. Interestingly, these variants are enriched near genes that are down-regulated in human compared to chimpanzee cerebral organoids, particularly in cells analogous to radial glial neural progenitors. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.


September 22, 2019  |  

No assembly required: Full-length MHC class I allele discovery by PacBio circular consensus sequencing.

Single-molecule real-time (SMRT) sequencing technology with the Pacific Biosciences (PacBio) RS II platform offers the potential to obtain full-length coding regions (~1100-bp) from MHC class I cDNAs. Despite the relatively high error rate associated with SMRT technology, high quality sequences can be obtained by circular consensus sequencing (CCS) due to the random nature of the error profile. In the present study we first validated the ability of SMRT-CCS to accurately identify class I transcripts in Mauritian-origin cynomolgus macaques (Macaca fascicularis) that have been characterized previously by cloning and Sanger-based sequencing as well as pyrosequencing approaches. We then applied this SMRT-CCS method to characterize 60 novel full-length class I transcript sequences expressed by a cohort of cynomolgus macaques from China. The SMRT-CCS method described here provides a straightforward protocol for characterization of unfragmented single-molecule cDNA transcripts that will potentially revolutionize MHC class I allele discovery in nonhuman primates and other species. Published by Elsevier Inc.


September 22, 2019  |  

Avian transcriptomics: opportunities and challenges

Recent developments in next-generation sequencing technologies have greatly facilitated the study of whole transcriptomes in model and non-model species. Studying the transcriptome and how it changes across a variety of biological conditions has had major implications for our understanding of how the genome is regulated in different contexts, and how to interpret adaptations and the phenotype of an organism. The aim of this review is to highlight the potential of these new technologies for the study of avian transcriptomics, and to summarise how transcriptomics has been applied in ornithology. A total of 81 peer-reviewed scientific articles that used transcriptomics to answer questions within a broad range of study areas in birds are used as examples throughout the review. We further provide a quick guide to highlight the most important points which need to be take into account when planning a transcriptomic study in birds, and discuss how researchers with little background in molecular biology can avoid potential pitfalls. Suggestions for further reading are supplied throughout. We also discuss possible future developments in the technology platforms used for ribonucleic acid sequencing. By summarising how these novel technologies can be used to answer questions that have long been asked by ornithologists, we hope to bridge the gap between traditional ornithology and genomics, and to stimulate more interdisciplinary research.


September 22, 2019  |  

Somatic APP gene recombination in Alzheimer’s disease and normal neurons.

The diversity and complexity of the human brain are widely assumed to be encoded within a constant genome. Somatic gene recombination, which changes germline DNA sequences to increase molecular diversity, could theoretically alter this code but has not been documented in the brain, to our knowledge. Here we describe recombination of the Alzheimer’s disease-related gene APP, which encodes amyloid precursor protein, in human neurons, occurring mosaically as thousands of variant ‘genomic cDNAs’ (gencDNAs). gencDNAs lacked introns and ranged from full-length cDNA copies of expressed, brain-specific RNA splice variants to myriad smaller forms that contained intra-exonic junctions, insertions, deletions, and/or single nucleotide variations. DNA in situ hybridization identified gencDNAs within single neurons that were distinct from wild-type loci and absent from non-neuronal cells. Mechanistic studies supported neuronal ‘retro-insertion’ of RNA to produce gencDNAs; this process involved transcription, DNA breaks, reverse transcriptase activity, and age. Neurons from individuals with sporadic Alzheimer’s disease showed increased gencDNA diversity, including eleven mutations known to be associated with familial Alzheimer’s disease that were absent from healthy neurons. Neuronal gene recombination may allow ‘recording’ of neural activity for selective ‘playback’ of preferred gene variants whose expression bypasses splicing; this has implications for cellular diversity, learning and memory, plasticity, and diseases of the human brain.


September 22, 2019  |  

Transcriptome analysis of distinct cold tolerance strategies in the rubber tree (Hevea brasiliensis)

Natural rubber is an indispensable commodity used in approximately 40,000 products and is fundamental to the tire industry. Among the species that produce latex, the rubber tree [Hevea brasiliensis (Willd. ex Adr. de Juss.) Muell-Arg.], a species native to the Amazon rainforest, is the major producer of latex used worldwide. The Amazon Basin presents optimal conditions for rubber tree growth, but the occurrence of South American leaf blight, which is caused by the fungus Microcyclus ulei (P. Henn) v. Arx, limits rubber tree production. Currently, rubber tree plantations are located in scape regions that exhibit suboptimal conditions such as high winds and cold temperatures. Rubber tree breeding programs aim to identify clones that are adapted to these stress conditions. However, rubber tree breeding is time-consuming, taking more than 20 years to develop a new variety. It is also expensive and requires large field areas. Thus, genetic studies could optimize field evaluations, thereby reducing the time and area required for these experiments. Transcriptome sequencing using next-generation sequencing (RNA-seq) is a powerful tool to identify a full set of transcripts and for evaluating gene expression in model and non-model species. In this study, we constructed a comprehensive transcriptome to evaluate the cold response strategies of the RRIM600 (cold-resistant) and GT1 (cold-tolerant) genotypes. Furthermore, we identified putative microsatellite (SSR) and single-nucleotide polymorphism (SNP) markers. Alternative splicing, which is an important mechanism for plant adaptation under abiotic stress, was further identified, providing an important database for further studies of cold tolerance.


September 22, 2019  |  

Circular RNA architecture and differentiation during leaf bud to young leaf development in tea (Camellia sinensis).

Circular RNA (circRNA) discovery, expression patterns and experimental validation in developing tea leaves indicates its correlation with circRNA-parental genes and potential roles in ceRNA interaction network. Circular RNAs (circRNAs) have recently emerged as a novel class of abundant endogenous stable RNAs produced by circularization with regulatory potential. However, identification of circRNAs in plants, especially in non-model plants with large genomes, is challenging. In this study, we undertook a systematic identification of circRNAs from different stage tissues of tea plant (Camellia sinensis) leaf development using rRNA-depleted circular RNA-seq. By combining two state-of-the-art detecting tools, we characterized 3174 circRNAs, of which 342 were shared by each approach, and thus considered high-confidence circRNAs. A few predicted circRNAs were randomly chosen, and 20 out of 24 were experimental confirmed by PCR and Sanger sequencing. Similar in other plants, tissue-specific expression was also observed for many C. sinensis circRNAs. In addition, we found that circRNA abundances were positively correlated with the mRNA transcript abundances of their parental genes. qRT-PCR validated the differential expression patterns of circRNAs between leaf bud and young leaf, which also indicated the low expression abundance of circRNAs compared to the standard mRNAs from the parental genes. We predicted the circRNA-microRNA interaction networks, and 54 of the differentially expressed circRNAs were found to have potential tea plant miRNA binding sites. The gene sets encoding circRNAs were significantly enriched in chloroplasts related GO terms and photosynthesis/metabolites biosynthesis related KEGG pathways, suggesting the candidate roles of circRNAs in photosynthetic machinery and metabolites biosynthesis during leaf development.


September 22, 2019  |  

Microsatellites from Fosterella christophii (Bromeliaceae) by de novo transcriptome sequencing on the Pacific Biosciences RS platform.

Microsatellite markers were developed in Fosterella christophii (Bromeliaceae) to investigate the genetic diversity and population structure within the F. micrantha group, comprising F. christophii, F. micrantha, and F. villosula.Full-length cDNAs were isolated from F. christophii and sequenced on a Pacific Biosciences RS platform. A total of 1590 high-quality consensus isoforms were assembled into 971 unigenes containing 421 perfect microsatellites. Thirty primer sets were designed, of which 13 revealed a high level of polymorphism in three populations of F. christophii, with four to nine alleles per locus. Each of these 13 loci cross-amplified in the closely related species F. micrantha and F. villosula, with one to six and one to 11 alleles per locus, respectively.The new markers are promising tools to study the population genetics of F. christophii and to discover species boundaries within the F. micrantha group.


September 22, 2019  |  

Transcriptome profiling of two ornamental and medicinal papaver herbs.

The Papaver spp. (Papaver rhoeas (Corn poppy) and Papaver nudicaule (Iceland poppy)) genera are ornamental and medicinal plants that are used for the isolation of alkaloid drugs. In this study, we generated 700 Mb of transcriptome sequences with the PacBio platform. They were assembled into 120,926 contigs, and 1185 (82.2%) of the benchmarking universal single-copy orthologs (BUSCO) core genes were completely present in our assembled transcriptome. Furthermore, using 128 Gb of Illumina sequences, the transcript expression was assessed at three stages of Papaver plant development (30, 60, and 90 days), from which we identified 137 differentially expressed transcripts. Furthermore, three co-occurrence heat maps are generated from 51 different plant genomes along with the Papaver transcriptome, i.e., secondary metabolite biosynthesis, isoquinoline alkaloid biosynthesis (BIA) pathway, and cytochrome. Sixty-nine transcripts in the BIA pathway along with 22 different alkaloids (quantified with LC-QTOF-MS/MS) were mapped into the BIA KEGG map (map00950). Finally, we identified 39 full-length cytochrome transcripts and compared them with other genomes. Collectively, this transcriptome data, along with the expression and quantitative metabolite profiles, provides an initial recording of secondary metabolites and their expression related to Papaver plant development. Moreover, these profiles could help to further detail the functional characterization of the various secondary metabolite biosynthesis and Papaver plant development associated problems.


September 22, 2019  |  

Human and rhesus macaque KIR haplotypes defined by their transcriptomes.

The killer-cell Ig-like receptors (KIRs) play a central role in the immune recognition in infection, pregnancy, and transplantation through their interactions with MHC class I molecules. KIR genes display abundant copy number variation as well as high levels of polymorphism. As a result, it is challenging to characterize this structurally dynamic region. KIR haplotypes have been analyzed in different species using conventional characterization methods, such as Sanger sequencing and Roche/454 pyrosequencing. However, these methods are time-consuming and often failed to define complete haplotypes, or do not reach allele-level resolution. In addition, most analyses were performed on genomic DNA, and thus were lacking substantial information about transcription and its corresponding modifications. In this paper, we present a single-molecule real-time sequencing approach, using Pacific Biosciences Sequel platform to characterize the KIR transcriptomes in human and rhesus macaque (Macaca mulatta) families. This high-resolution approach allowed the identification of novel Mamu-KIR alleles, the extension of reported allele sequences, and the determination of human and macaque KIR haplotypes. In addition, multiple recombinant KIR genes were discovered, all located on contracted haplotypes, which were likely the result of chromosomal rearrangements. The relatively high number of contracted haplotypes discovered might be indicative of selection on small KIR repertoires and/or novel fusion gene products. This next-generation method provides an improved high-resolution characterization of the KIR cluster in humans and macaques, which eventually may aid in a better understanding and interpretation of KIR allele-associated diseases, as well as the immune response in transplantation and reproduction. Copyright © 2018 by The American Association of Immunologists, Inc.


September 22, 2019  |  

A carnivorous plant genetic map: pitcher/insect-capture QTL on a genetic linkage map of Sarracenia.

The study of carnivorous plants can afford insight into their unique evolutionary adaptations and their interactions with prokaryotic and eukaryotic species. For Sarracenia (pitcher plants), we identified 64 quantitative trait loci (QTL) for insect-capture traits of the pitchers, providing the genetic basis for differences between the pitfall and lobster-trap strategies of insect capture. The linkage map developed here is based upon the F2 of a cross between Sarracenia rosea and Sarracenia psittacina; we mapped 437 single nucleotide polymorphism and simple sequence repeat markers. We measured pitcher traits which differ between S. rosea and S. psittacina, mapping 64 QTL for 17 pitcher traits; there are hot-spot locations where multiple QTL map near each other. There are epistatic interactions in many cases where there are multiple loci for a trait. The QTL map uncovered the genetic basis for the differences between pitfall- and lobster-traps, and the changes that occurred during the divergence of these species. The longevity and clonability of Sarracenia plants make the F2 mapping population a resource for mapping more traits and for phenotype-to-genotype studies.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.