Menu
June 1, 2021  |  

Low-input long-read sequencing for complete microbial genomes and metagenomic community analysis.

Microbial genome sequencing can be done quickly, easily, and efficiently with the PacBio sequencing instruments, resulting in complete de novo assemblies. Alternative protocols have been developed to reduce the amount of purified DNA required for SMRT Sequencing, to broaden applicability to lower-abundance samples. If 50-100 ng of microbial DNA is available, a 10-20 kb SMRTbell library can be made. A 2 kb SMRTbell library only requires a few ng of gDNA when carrier DNA is added to the library. The resulting libraries can be loaded onto multiple SMRT Cells, yielding more than enough data for complete assembly of microbial genomes using the SMRT Portal assembly program HGAP, plus base-modification analysis. The entire process can be done in less than 3 days by standard laboratory personnel. This approach is particularly important for the analysis of metagenomic communities, in which genomic DNA is often limited. From these samples, full-length 16S amplicons can be generated, prepped with the standard SMRTbell library prep protocol, and sequenced. Alternatively, a 2 kb sheared library, made from a few ng of input DNA, can also be used to elucidate the microbial composition of a community, and may provide information about biochemical pathways present in the sample. In both these cases, 1-2 kb reads with >99% accuracy can be obtained from Circular Consensus Sequencing.


June 1, 2021  |  

Low-input long-read sequencing for complete microbial genomes and metagenomic community analysis

Microbial genome sequencing can be done quickly, easily, and efficiently with the PacBio sequencing instruments, resulting in complete de novo assemblies. Alternative protocols have been developed to reduce the amount of purified DNA required for SMRT Sequencing, to broaden applicability to lower-abundance samples. If 50-100 ng of microbial DNA is available, a 10-20 kb SMRTbell library can be made. The resulting library can be loaded onto multiple SMRT Cells, yielding more than enough data for complete assembly of microbial genomes using the SMRT Portal assembly program HGAP, plus base modification analysis. The entire process can be done in less than 3 days by standard laboratory personnel. This approach is particularly important for analysis of metagenomic communities, in which genomic DNA is often limited. From these samples, full-length 16S amplicons can be generated, prepped with the standard SMRTbell library prep protocol, and sequenced. Alternatively, a 2 kb sheared library, made from a few ng of input DNA, can also be used to elucidate the microbial composition of a community, and may provide information about biochemical pathways present in the sample. In both these cases, 1-2 kb reads with >99.9% accuracy can be obtained from Circular Consensus Sequencing.


June 1, 2021  |  

Multiplexing strategies for microbial whole genome SMRT Sequencing

The increased throughput of the RS II and Sequel Systems enables multiple microbes to be sequenced on a single SMRT Cell. This multiplexing can be readily achieved by simply incorporating a unique barcode for each microbe into the SMRTbell adapters after shearing genomic DNA using a streamlined library construction process. Incorporating a barcode without the requirement for PCR amplification prevents the loss of epigenetic information (e.g., methylation signatures), and the generation of chimeric sequences, while the modified protocol eliminates the need to build several individual SMRTbell libraries. We multiplexed up to 8 unique strains of H. pylori. Each strain was sheared, and processed through adapter ligation in a single, addition only reaction. The barcoded strains were then pooled in equimolar quantities, and processed through the remainder of the library preparation and purification steps. We demonstrate successful de novo microbial assembly and epigenetic analysis from all multiplexes (2 through 8-plex) using standard tools within SMRT Link Analysis using data generated from a single SMRTbell library, run on a single SMRT Cell. This process facilitates the sequencing of multiple microbial genomes in a single day, greatly increasing throughput and reducing costs per genome assembly.


June 1, 2021  |  

Applying Sequel to Genomic Datasets

De novo assembly is a large part of JGI’s analysis portfolio. Repetitive DNA sequences are abundant in a wide range of organisms we sequence and pose a significant technical challenge for assembly. We are interested in long read technologies capable of spanning genomic repeats to produce better assemblies. We currently have three RS II and two Sequel PacBio machines. RS II machines are primarily used for fungal and microbial genome assembly as well as synthetic biology validation. Between microbes and fungi we produce hundreds of PacBio libraries a year and for throughput reasons the vast majority of these are >10 kb AMPure libraries. Throughput for RS II is about 1 Gb per SMRT Cell. This is ideal for microbial sized genomes but can be costly and labor intensive for larger projects which require multiple cells. JGI was an early access site for Sequel and began testing with real samples in January 2016. During that time we’ve had the opportunity to sequence microbes, fungi, metagenomes, and plants. Here we present our experience over the last 18 months using the Sequel platform and provide comparisons with RS II results.


June 1, 2021  |  

Multiplexed complete microbial genomes on the Sequel System

Microbes play an important role in nearly every part of our world, as they affect human health, our environment, agriculture, and aid in waste management. Complete closed genome sequences, which have become the gold standard with PacBio long-read sequencing, can be key to understanding microbial functional characteristics. However, input requirements, consumables costs, and the labor required to prepare and sequence a microbial genome have in the past put PacBio sequencing out of reach for some larger projects. We have developed a multiplexed library prep approach that is simple, fast, and cost-effective, and can produce 4 to 16 closed bacterial genomes from one Sequel SMRT Cell. Additionally, we are introducing a streamlined analysis pipeline for processing multiplexed genome sequence data through de novo HGAP assembly, making the entire process easy for lab personnel to perform. Here we present the entire workflow from shearing through assembly, with times for each step. We show HGAP assembly results with single or very few contigs from bacteria from different size genomes, sequenced without or with size selection. These data illustrate the benefits and potential of the PacBio multiplexed library prep and the Sequel System for sequencing large numbers of microbial genomes.


June 1, 2021  |  

Best practices for whole genome sequencing using the Sequel System

Plant and animal whole genome sequencing has proven to be challenging, particularly due to genome size, high density of repetitive elements and heterozygosity. The Sequel System delivers long reads, high consensus accuracy and uniform coverage, enabling more complete, accurate, and contiguous assemblies of these large complex genomes. The latest Sequel chemistry increases yield up to 8 Gb per SMRT Cell for long insert libraries >20 kb and up to 10 Gb per SMRT Cell for libraries >40 kb. In addition, the recently released SMRTbell Express Template Prep Kit reduces the time (~3 hours) and DNA input (~3 µg), making the workflow easy to use for multi- SMRT Cell projects. Here, we recommend the best practices for whole genome sequencing and de novo assembly of complex plant and animal genomes. Guidelines for constructing large-insert SMRTbell libraries (>30 kb) to generate optimal read lengths and yields using the latest Sequel chemistry are presented. We also describe ways to maximize library yield per preparation from as littles as 3 µg of sheared genomic DNA. The combination of these advances makes plant and animal whole genome sequencing a practical application of the Sequel System.


June 1, 2021  |  

Single chromosomal genome assemblies on the Sequel System with Circulomics high molecular weight DNA extraction for microbes

Background: The Nanobind technology from Circulomics provides an elegant HMW DNA extraction solution for genome sequencing of Gram-positive and -negative microbes. Nanobind is a nanostructured magnetic disk that can be used for rapid extraction of high molecular weight (HMW) DNA from diverse sample types including cultured cells, blood, plant nuclei, and bacteria. Processing can be completed in <1 hour for most sample types and can be performed manually or automated with common instruments. Methods:We have validated several critical steps for generating high-quality microbial genome assemblies in a streamlined microbial multiplexing workflow. This new workflow enables high-volume, cost-effective sequencing of up to 16 microbes totaling 30 Mb in genome size on a single SMRT Cell 1M using a target shear size of 10 kb. We also evaluated this method on a pool of four “class 3” microbes that contain >7 kb repeats. Fragment size was increased to ~14 kb, with some fragments >30 kb. Results: Here we present a demonstration of these capabilities using isolates relevant to high-throughput sequencing applications, including common foodborne pathogens (Shigella, Listeria, Salmonella), and species often seen in hospital settings (Klebsiella, Staphylococcus). For nearly all microbes, including difficult-to-assemble class III microbes, we achieved complete de novo microbial assemblies of =5 chromosomal contigs with minimum quality scores of 40 (99.99% accuracy) using data from multiplexed SMRTbell libraries. Each library was sequenced on a single SMRT Cell 1M with the PacBio Sequel System and analyzed with streamlined SMRT Analysis assembly methods. Conclusions: We achieved high-quality, closed microbial genomes using a combination of Circulomics Nanobind extraction and PacBio SMRT Sequencing, along with a newly streamlined workflow that includes automated demultiplexing and push-button assembly.


June 1, 2021  |  

Streamlines SMRTbell library generation using addition-only, single tube strategy for all library types reduces time to results

We have streamlined the SMRTbell library generation protocols with improved workflows to deliver seamless end-to-end solutions from sample to analysis. A key improvement is the development of a single-tube reaction strategy that shortened hands-on time needed to generate each SMRTbell library, reduced time-consuming AM Pure purification steps, and minimized sample-handling induced gDNA damage to improve the integrity of long-insert SMRTbell templates for sequencing. The improved protocols support all large-insert genomic libraries, multiplexed microbial genomes, and amplicon sequencing. These advances enable completion of library preparation in less than a day (approximately 4 hours) and opens opportunities for automated library preparation for large-scale projects. Here we share data summarizing performance of the new SMRTbell Express Template Kit 2.0 representing our solutions for 10 kb and >50 kb large-insert genomic libraries, complete microbial genome assemblies, and high-throughput amplicon sequencing. The improved throughput of the Sequel System with read lengths up to 30 kb and high consensus accuracy (> 99.999% accuracy) makes sequencing with high-quality results increasingly assessible to the community.


April 21, 2020  |  

Improved assembly and variant detection of a haploid human genome using single-molecule, high-fidelity long reads.

The sequence and assembly of human genomes using long-read sequencing technologies has revolutionized our understanding of structural variation and genome organization. We compared the accuracy, continuity, and gene annotation of genome assemblies generated from either high-fidelity (HiFi) or continuous long-read (CLR) datasets from the same complete hydatidiform mole human genome. We find that the HiFi sequence data assemble an additional 10% of duplicated regions and more accurately represent the structure of tandem repeats, as validated with orthogonal analyses. As a result, an additional 5 Mbp of pericentromeric sequences are recovered in the HiFi assembly, resulting in a 2.5-fold increase in the NG50 within 1 Mbp of the centromere (HiFi 480.6 kbp, CLR 191.5 kbp). Additionally, the HiFi genome assembly was generated in significantly less time with fewer computational resources than the CLR assembly. Although the HiFi assembly has significantly improved continuity and accuracy in many complex regions of the genome, it still falls short of the assembly of centromeric DNA and the largest regions of segmental duplication using existing assemblers. Despite these shortcomings, our results suggest that HiFi may be the most effective standalone technology for de novo assembly of human genomes. © 2019 John Wiley & Sons Ltd/University College London.


April 21, 2020  |  

Antibiotic susceptibility of plant-derived lactic acid bacteria conferring health benefits to human.

Lactic acid bacteria (LAB) confer health benefits to human when administered orally. We have recently isolated several species of LAB strains from plant sources, such as fruits, vegetables, flowers, and medicinal plants. Since antibiotics used to treat bacterial infection diseases induce the emergence of drug-resistant bacteria in intestinal microflora, it is important to evaluate the susceptibility of LAB strains to antibiotics to ensure the safety and security of processed foods. The aim of the present study is to determine the minimum inhibitory concentration (MIC) of antibiotics against several plant-derived LAB strains. When aminoglycoside antibiotics, such as streptomycin (SM), kanamycin (KM), and gentamicin (GM), were evaluated using LAB susceptibility test medium (LSM), the MIC was higher than when using Mueller-Hinton (MH) medium. Etest, which is an antibiotic susceptibility assay method consisting of a predefined gradient of antibiotic concentrations on a plastic strip, is used to determine the MIC of antibiotics world-wide. In the present study, we demonstrated that Etest was particularly valuable while testing LAB strains. We also show that the low susceptibility of the plant-derived LAB strains against each antibiotic tested is due to intrinsic resistance and not acquired resistance. This finding is based on the whole-genome sequence information reflecting the horizontal spread of the drug-resistance genes in the LAB strains.


April 21, 2020  |  

Comparison of mitochondrial DNA variants detection using short- and long-read sequencing.

The recent advent of long-read sequencing technologies is expected to provide reasonable answers to genetic challenges unresolvable by short-read sequencing, primarily the inability to accurately study structural variations, copy number variations, and homologous repeats in complex parts of the genome. However, long-read sequencing comes along with higher rates of random short deletions and insertions, and single nucleotide errors. The relatively higher sequencing accuracy of short-read sequencing has kept it as the first choice of screening for single nucleotide variants and short deletions and insertions. Albeit, short-read sequencing still suffers from systematic errors that tend to occur at specific positions where a high depth of reads is not always capable to correct for these errors. In this study, we compared the genotyping of mitochondrial DNA variants in three samples using PacBio’s Sequel (Pacific Biosciences Inc., Menlo Park, CA, USA) long-read sequencing and illumina’s HiSeqX10 (illumine Inc., San Diego, CA, USA) short-read sequencing data. We concluded that, despite the differences in the type and frequency of errors in the long-reads sequencing, its accuracy is still comparable to that of short-reads for genotyping short nuclear variants; due to the randomness of errors in long reads, a lower coverage, around 37 reads, can be sufficient to correct for these random errors.


April 21, 2020  |  

Genomic analysis of Marinobacter sp. NP-4 and NP-6 isolated from the deep-sea oceanic crust on the western flank of the Mid-Atlantic Ridge

Two Marinobacter sp. NP-4 and NP-6 were isolated from a deep oceanic basaltic crust at North Pond, located at the western flank of the Mid-Atlantic Ridge. These two strains are capable of using multiple carbon sources such as acetate, succinate, glucose and sucrose while take oxygen as a primary electron acceptor. The strain NP-4 is also able to grow anaerobically under 20?MPa, with nitrate as the electron acceptor, thus represents a piezotolerant. To explore the metabolic potentials of Marinobacter sp. NP-4 and NP-6, the complete genome of NP-4 and close-to-complete genome of NP-6 were sequenced. The genome of NP-4 contains one chromosome and two plasmids with the size of 4.6?Mb in total, and with average GC content of 57.0%. The genome of NP-6 is 4.5?Mb and consists of 6 scaffolds, with an average GC content of 57.1%. Complete glycolysis, citrate cycle and aromatics compounds degradation pathways are identified in genomes of these two strains, suggesting that they possess a heterotrophic life style. Additionally, one plasmid of NP-4 contains genes for alkane degradation, phosphonate ABC transporter and cation efflux system, enabling NP-4 extra surviving abilities. In total, genomic information of these two strains provide insights into the physiological features and adaptation strategies of Marinobacter spp. in the deep oceanic crust biosphere.


April 21, 2020  |  

Complete genome sequence of Paenisporosarcina antarctica CGMCC 1.6503 T, a marine psychrophilic bacterium isolated from Antarctica

A marine psychrophilic bacterium _Paenisporosarcina antarctica_ CGMCC 1.6503T (= JCM 14646T) was isolated off King George Island, Antarctica (62°13’31? S 58°57’08? W). In this study, we report the complete genome sequence of _Paenisporosarcina antarctica_, which is comprised of 3,972,524?bp with a mean G?+?C content of 37.0%. By gene function and metabolic pathway analyses, studies showed that strain CGMCC 1.6503T encodes a series of genes related to cold adaptation, including encoding fatty acid desaturases, dioxygenases, antifreeze proteins and cold shock proteins, and possesses several two-component regulatory systems, which could assist this strain in responding to the cold stress, the oxygen stress and the osmotic stress in Antarctica. The complete genome sequence of _P. antarctica_ may provide further insights into the genetic mechanism of cold adaptation for Antarctic marine bacteria.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.