April 21, 2020  |  

Population Genome Sequencing of the Scab Fungal Species Venturia inaequalis, Venturia pirina, Venturia aucupariae and Venturia asperata.

The Venturia genus comprises fungal species that are pathogens on Rosaceae host plants, including V. inaequalis and V. asperata on apple, V. aucupariae on sorbus and V. pirina on pear. Although the genetic structure of V. inaequalis populations has been investigated in detail, genomic features underlying these subdivisions remain poorly understood. Here, we report whole genome sequencing of 87 Venturia strains that represent each species and each population within V. inaequalis We present a PacBio genome assembly for the V. inaequalis EU-B04 reference isolate. The size of selected genomes was determined by flow cytometry, and varied from 45 to 93 Mb. Genome assemblies of V. inaequalis and V. aucupariae contain a high content of transposable elements (TEs), most of which belong to the Gypsy or Copia LTR superfamilies and have been inactivated by Repeat-Induced Point mutations. The reference assembly of V. inaequalis presents a mosaic structure of GC-equilibrated regions that mainly contain predicted genes and AT-rich regions, mainly composed of TEs. Six pairs of strains were identified as clones. Single-Nucleotide Polymorphism (SNP) analysis between these clones revealed a high number of SNPs that are mostly located in AT-rich regions due to misalignments and allowed determining a false discovery rate. The availability of these genome sequences is expected to stimulate genetics and population genomics research of Venturia pathogens. Especially, it will help understanding the evolutionary history of Venturia species that are pathogenic on different hosts, a history that has probably been substantially influenced by TEs.Copyright © 2019 Le Cam et al.

April 21, 2020  |  

Systematic evasion of the restriction-modification barrier in bacteria.

Bacteria that are recalcitrant to genetic manipulation using modern in vitro techniques are termed genetically intractable. Genetic intractability is a fundamental barrier to progress that hinders basic, synthetic, and translational microbiology research and development beyond a few model organisms. The most common underlying causes of genetic intractability are restriction-modification (RM) systems, ubiquitous defense mechanisms against xenogeneic DNA that hinder the use of genetic approaches in the vast majority of bacteria and exhibit strain-level variation. Here, we describe a systematic approach to overcome RM systems. Our approach was inspired by a simple hypothesis: if a synthetic piece of DNA lacks the highly specific target recognition motifs for a host’s RM systems, then it is invisible to these systems and will not be degraded during artificial transformation. Accordingly, in this process, we determine the genome and methylome of an individual bacterial strain and use this information to define the bacterium’s RM target motifs. We then synonymously eliminate RM targets from the nucleotide sequence of a genetic tool in silico, synthesize an RM-silent “SyngenicDNA” tool, and propagate the tool as minicircle plasmids, termed SyMPL (SyngenicDNA Minicircle Plasmid) tools, before transformation. In a proof-of-principle of our approach, we demonstrate a profound improvement (five orders of magnitude) in the transformation of a clinically relevant USA300 strain of Staphylococcus aureus This stealth-by-engineering SyngenicDNA approach is effective, flexible, and we expect in future applications could enable microbial genetics free of the restraints of restriction-modification barriers.Copyright © 2019 the Author(s). Published by PNAS.

April 21, 2020  |  

Genomics-driven discovery of a biosynthetic gene cluster required for the synthesis of BII-Rafflesfungin from the fungus Phoma sp. F3723.

Phomafungin is a recently reported broad spectrum antifungal compound but its biosynthetic pathway is unknown. We combed publicly available Phoma genomes but failed to find any putative biosynthetic gene cluster that could account for its biosynthesis.Therefore, we sequenced the genome of one of our Phoma strains (F3723) previously identified as having antifungal activity in a high-throughput screen. We found a biosynthetic gene cluster that was predicted to synthesize a cyclic lipodepsipeptide that differs in the amino acid composition compared to Phomafungin. Antifungal activity guided isolation yielded a new compound, BII-Rafflesfungin, the structure of which was determined.We describe the NRPS-t1PKS cluster ‘BIIRfg’ compatible with the synthesis of the cyclic lipodepsipeptide BII-Rafflesfungin [HMHDA-L-Ala-L-Glu-L-Asn-L-Ser-L-Ser-D-Ser-D-allo-Thr-Gly]. We report new Stachelhaus codes for Ala, Glu, Asn, Ser, Thr, and Gly. We propose a mechanism for BII-Rafflesfungin biosynthesis, which involves the formation of the lipid part by BIIRfg_PKS followed by activation and transfer of the lipid chain by a predicted AMP-ligase on to the first PCP domain of the BIIRfg_NRPS gene.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.