X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, October 25, 2020

AGBT Virtual Poster: Detection of damaged DNA bases using SMRT Sequencing

Tyson Clark, a scientist at PacBio, demonstrates the detection and identification of damaged DNA using SMRT Sequencing. With the platform’s ability to see base modifications, Clark notes that the polymerase kinetics can distinguish between different types of DNA damage as well — such as oxidative, radiation, and alkylation. This could help in studies of cancer and aging, where DNA damage is an important factor.

Read More »

Sunday, October 25, 2020

Stanford Symposium: Dynamic chromosome methylation controls cell cycle progression

Stanford University developmental biologist Lucy Shapiro discusses a collaborative research effort with PacBio sequencing that revealed previously unknown aspects of how chromosome methylation regulates cell cycle progression in Caulobacter. The ability to detect DNA modifications through SMRT Sequencing proved critical in determining methylation states throughout the cell cycle.

Read More »

Sunday, October 25, 2020

Customer Experience: Exploring the genetics of fragile X syndrome using DNA sequencing technology

Paul Hagerman, MD/PhD, a professor in the biochemistry and molecular medicine department at UC Davis discusses the use of PacBio SMRT sequencing technology for the fragile X gene. Hagerman says the PacBio RS is able to sequence through more than a kilobase of the CGG trinucleotide repeat element underlying Fragile X Syndrome — something no other sequencing platform has achieved. He also plans to use the data to study methylation of this gene, which tends to occur in cases where there are more than 200 copies of the CGG element.

Read More »

Sunday, October 25, 2020

ASM PacBio Workshop: Comprehensive methylome analysis of the human gastric pathogen, Helicobacter pylori

Sebastian Suerbaum from Hannover Medical School shows that genome-wide methylation patterns in Helicobacter pylori are highly complex and diverge significantly between strains of the microbe. He presents a full-methylome analysis of two H. pylori strains, finding 32 total methylated motifs with just seven shared between strains. Of the 32 motifs, 11 were new discoveries.

Read More »

Sunday, October 25, 2020

ASM PacBio Workshop: Large-scale analysis of restriction-modification in systems using SMRT Sequencing

Brian Anton from New England BioLabs presents data on methylation analysis using SMRT Sequencing. He describes both restriction-modification systems and orphan methylases, noting that the number of methylases characterized has more than tripled since the introduction of SMRT Sequencing. The presentation includes a phylogenetic analysis of methyltransferase genes

Read More »

Sunday, October 25, 2020

ASM PacBio Workshop: Phasevarion – switching expression of multiple genes by methyltransferases in host-adapted pathogens

Epigenetics expert Michael Jennings from Griffith University first posited the phasevarion, or the phase variable regulon mechanism in host-adapted pathogens. This mechanism switches expression of multiple genes in a coordinated fashion and has significant implications on pathogen virulence. In his talk, Jennings describes the phasevarion and his use of whole methylome data to rapidly identify methylation targets.

Read More »

Sunday, October 25, 2020

Customer Experience: PacBio at Sanger Institute – de novo assembly, methylation analysis, and detection of rare variants

Harold Swerdlow, who formerly ran the R&D department at Wellcome Trust Sanger Institute, discusses the Sanger team’s use of the PacBio RS sequencer. He says the system is uniquely suited for de novo sequencing and genome assembly, methylation pattern identification, and low-level variant detection because of its long reads and high-accuracy, single-molecule sequencing. At Sanger, that makes a real difference for the large-scale projects they have in cancer biology, pathogen sequencing, and human genetics.

Read More »

Sunday, October 25, 2020

ASM PacBio Workshop: Genomics in food security – 100k pathogen genome project

UC Davis’s Bart Weimer describes foodborne pathogens and their proclivity for rapid genome rearrangement. The 100K Pathogen Genome Project he leads is using PacBio long-read sequencing to close genomes and analyze methylation; Weimer reports that his team has already discovered new epigenetic modifications in Salmonella and Listeria with the technology.

Read More »

Sunday, October 25, 2020

AGBT Conference: Automated de novo genome assemblies and bacterial epigenomes using PacBio sequencing

In this AGBT plenary talk, Jonas Korlach presented a number of collaborative studies between PacBio and other institutions to make use of highly accurate, long-read sequence data, which has led to a revival of finished genomes. Examples from the infectious disease or pathogen realm included Pertussis, Salmonella, and Listeria, all of which now have closed genomes from PacBio-generated data. Korlach also reported on epigenomic information in Salmonella and Listeria, indicating potential new forms of DNA modifications.

Read More »

1 2 3 58

Subscribe for blog updates:

Archives