Menu
April 21, 2020  |  

Salmonella Genomic Island 3 Is an Integrative and Conjugative Element and Contributes to Copper and Arsenic Tolerance of Salmonella enterica.

Salmonella genomic island 3 (SGI3) was first described as a chromosomal island in Salmonella 4,[5],12:i:-, a monophasic variant of Salmonella enterica subsp. enterica serovar Typhimurium. The SGI3 DNA sequence detected from Salmonella 4,[5],12:i:- isolated in Japan was identical to that of a previously reported one across entire length of 81?kb. SGI3 consists of 86 open reading frames, including a copper homeostasis and silver resistance island (CHASRI) and an arsenic tolerance operon, in addition to genes related to conjugative transfer and DNA replication or partitioning, suggesting that the island is a mobile genetic element. We successfully selected transconjugants that acquired SGI3 after filter-mating experiments using the S. enterica serovars Typhimurium, Heidelberg, Hadar, Newport, Cerro, and Thompson as recipients. Southern blot analysis using I-CeuI-digested genomic DNA demonstrated that SGI3 was integrated into a chromosomal fragment of the transconjugants. PCR and sequencing analysis demonstrated that SGI3 was inserted into the 3′ end of the tRNA genes pheV or pheR The length of the target site was 52 or 55?bp, and a 55-bp attI sequence indicating generation of the circular form of SGI3 was also detected. The transconjugants had a higher MIC against CuSO4 compared to the recipient strains under anaerobic conditions. Tolerance was defined by the cus gene cluster in the CHASRI. The transconjugants also had distinctly higher MICs against Na2HAsO4 compared to recipient strains under aerobic conditions. These findings clearly demonstrate that SGI3 is an integrative and conjugative element and contributes to the copper and arsenic tolerance of S. enterica.Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

Sensitivity to the two peptide bacteriocin plantaricin EF is dependent on CorC, a membrane-bound, magnesium/cobalt efflux protein.

Lactic acid bacteria produce a variety of antimicrobial peptides known as bacteriocins. Most bacteriocins are understood to kill sensitive bacteria through receptor-mediated disruptions. Here, we report on the identification of the Lactobacillus plantarum plantaricin EF (PlnEF) receptor. Spontaneous PlnEF-resistant mutants of the PlnEF-indicator strain L. plantarum NCIMB 700965 (LP965) were isolated and confirmed to maintain cellular ATP levels in the presence of PlnEF. Genome comparisons resulted in the identification of a single mutated gene annotated as the membrane-bound, magnesium/cobalt efflux protein CorC. All isolates contained a valine (V) at position 334 instead of a glycine (G) in a cysteine-ß-synthase domain at the C-terminal region of CorC. In silico template-based modeling of this domain indicated that the mutation resides in a loop between two ß-strands. The relationship between PlnEF, CorC, and metal homeostasis was supported by the finding that PlnEF-resistance was lost when PlnEF was applied together with high concentrations of Mg2+ , Co2+ , Zn2+ , or Cu2+ . Lastly, PlnEF sensitivity was increased upon heterologous expression of LP965 corC but not the G334V CorC mutant in the PlnEF-resistant strain Lactobacillus casei BL23. These results show that PlnEF kills sensitive bacteria by targeting CorC. © 2019 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.


April 21, 2020  |  

Blast Fungal Genomes Show Frequent Chromosomal Changes, Gene Gains and Losses, and Effector Gene Turnover.

Pyricularia is a fungal genus comprising several pathogenic species causing the blast disease in monocots. Pyricularia oryzae, the best-known species, infects rice, wheat, finger millet, and other crops. As past comparative and population genomics studies mainly focused on isolates of P. oryzae, the genomes of the other Pyricularia species have not been well explored. In this study, we obtained a chromosomal-level genome assembly of the finger millet isolate P. oryzae MZ5-1-6 and also highly contiguous assemblies of Pyricularia sp. LS, P. grisea, and P. pennisetigena. The differences in the genomic content of repetitive DNA sequences could largely explain the variation in genome size among these new genomes. Moreover, we found extensive gene gains and losses and structural changes among Pyricularia genomes, including a large interchromosomal translocation. We searched for homologs of known blast effectors across fungal taxa and found that most avirulence effectors are specific to Pyricularia, whereas many other effectors share homologs with distant fungal taxa. In particular, we discovered a novel effector family with metalloprotease activity, distinct from the well-known AVR-Pita family. We predicted 751 gene families containing putative effectors in 7 Pyricularia genomes and found that 60 of them showed differential expression in the P. oryzae MZ5-1-6 transcriptomes obtained under experimental conditions mimicking the pathogen infection process. In summary, this study increased our understanding of the structural, functional, and evolutionary genomics of the blast pathogen and identified new potential effector genes, providing useful data for developing crops with durable resistance. © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.