June 1, 2021  |  

De novo assembly of a complex panicoid grass genome using ultra-long PacBio reads with P6C4 chemistry

Drought is responsible for much of the global losses in crop yields and understanding how plants naturally cope with drought stress is essential for breeding and engineering crops for the changing climate. Resurrection plants desiccate to complete dryness during times of drought, then “come back to life” once water is available making them an excellent model for studying drought tolerance. Understanding the molecular networks governing how resurrection plants handle desiccation will provide targets for crop engineering. Oropetium thomaeum (Oro) is a resurrection plant that also has the smallest known grass genome at 250 Mb compared to Brachypodium distachyon (300 Mb) and rice (350 Mb). Plant genomes, especially grasses, have complex repeat structures such as telomeres, centromeres, and ribosomal gene cassettes, and high heterozygosity, which makes them difficult to assembly using short read next generation sequencing technologies. Ultra-long PacBio reads using the new P6C4 chemistry and the latest 15kb Blue Pippin size-selection protocol to generate 20kb insert libraries that yielded an average read length of 12kb providing ~72X coverage, and 10X coverage with reads over 20kb. The HGAP assembly covers 98% of the genome with a contig N50 of 2.4 Mb, which makes it one of the highest quality and most complete plant genomes assembled to date. Oro has a compact genome structure compared to other grasses with only 16% repeat sequences but has very good collinearity with other grasses. Understanding the genomic mechanisms of extreme desiccation tolerance in resurrection plants like Oro will provide insights for engineering and intelligent breeding of improved food, fuel, and fiber crops.


April 21, 2020  |  

Complete genome of Pseudomonas sp. DMSP-1 isolated from the Arctic seawater of Kongsfjorden, Svalbard

The genus Pseudomonas is highly metabolically diverse and has colonized a wide range of ecological niches. The strain Pseudomonas sp. DMSP-1 was isolated from Arctic seawater (Kongsfjorden, Svalbard) using dimethylsulfoniopropionate (DMSP) as the sole carbon source. To better understand its role in the Arctic coastal ecosystem, the genome of Pseudomonas sp. strain DMSP-1 was completely sequenced. The genome contained a circular chromosome of 6,282,445?bp with an average GC content of 60.01?mol%. A total of 5510 protein coding genes, 70 tRNA genes and 19 rRNA genes were obtained. However, no genes encoding known enzymes associated with DMSP catabolism were identified in the genome, suggesting that novel DMSP degradation genes might exist in Pseudomonas sp. strain DMSP-1.


April 21, 2020  |  

An African Salmonella Typhimurium ST313 sublineage with extensive drug-resistance and signatures of host adaptation.

Bloodstream infections by Salmonella enterica serovar Typhimurium constitute a major health burden in sub-Saharan Africa (SSA). These invasive non-typhoidal (iNTS) infections are dominated by isolates of the antibiotic resistance-associated sequence type (ST) 313. Here, we report emergence of ST313 sublineage II.1 in the Democratic Republic of the Congo. Sublineage II.1 exhibits extensive drug resistance, involving a combination of multidrug resistance, extended spectrum ß-lactamase production and azithromycin resistance. ST313 lineage II.1 isolates harbour an IncHI2 plasmid we name pSTm-ST313-II.1, with one isolate also exhibiting decreased ciprofloxacin susceptibility. Whole genome sequencing reveals that ST313 II.1 isolates have accumulated genetic signatures potentially associated with altered pathogenicity and host adaptation, related to changes observed in biofilm formation and metabolic capacity. Sublineage II.1 emerged at the beginning of the 21st century and is involved in on-going outbreaks. Our data provide evidence of further evolution within the ST313 clade associated with iNTS in SSA.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.